Menu Close

lim-x-0-x-3-cos-x-sin-2-x-x-2-




Question Number 148849 by EDWIN88 last updated on 31/Jul/21
 lim_(x→0^+ ) ((x^3 −cos (√x) sin^2 x)/x^2 ) =?
limx0+x3cosxsin2xx2=?
Answered by iloveisrael last updated on 01/Aug/21
 lim_(x→0^+ ) ((x^3 −sin^3 x+sin^3 x−cos (√x) sin^2 x)/x^2 )  =lim_(x→0^+ ) ((x^3 −sin^3 x)/x^2 )+lim_(x→0^+ ) ((sin^2 x(sin x−cos (√x)))/x^2 )  =lim_(x→0^+ ) (((x−sin x)(x^2 +x sin x+sin^2 x))/x^2 )+lim_(x→0^+ ) (sin x−cos (√x) )  =lim_(x→0^+ ) (((((x−sin x)/x^3 )). x^3 (x^2 +x sin x+sin^2 x))/x^2 )−1  =lim_(x→0) (((1/6)x^3 (x^2 +x sin x+sin^2 x))/x^2 )−1  =(1/6)[lim_(x→0^+ ) (x(x^2 +x sin x+sin^2 x)]−1= −1.
limx0+x3sin3x+sin3xcosxsin2xx2=limx0+x3sin3xx2+limx0+sin2x(sinxcosx)x2=limx0+(xsinx)(x2+xsinx+sin2x)x2+limx0+(sinxcosx)=limx0+(xsinxx3).x3(x2+xsinx+sin2x)x21=limx016x3(x2+xsinx+sin2x)x21=16[limx0+(x(x2+xsinx+sin2x)]1=1.
Answered by mathmax by abdo last updated on 01/Aug/21
lim_(x→0^+ )   ((x^3 −cos((√x))sin^2 x)/x^2 )=lim_(x→0) x−cos((√x))(((sinx)/x))^2   =0−cos(0)×(1)^2  =−1
limx0+x3cos(x)sin2xx2=limx0xcos(x)(sinxx)2=0cos(0)×(1)2=1

Leave a Reply

Your email address will not be published. Required fields are marked *