Question Number 93955 by i jagooll last updated on 16/May/20
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} −\mathrm{sin}\:^{\mathrm{3}} {x}}{{x}^{\mathrm{5}} } \\ $$
Answered by john santu last updated on 16/May/20
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{x}−\mathrm{sin}\:\mathrm{x}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{xsin}\:\mathrm{x}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}\right)}{\mathrm{x}^{\mathrm{5}} } \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}−\mathrm{sin}\:\mathrm{x}}{\mathrm{x}^{\mathrm{3}} }\:×\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{xsin}\:\mathrm{x}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{x}^{\mathrm{2}} } \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}−\left(\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}!}+\mathrm{o}\left(\mathrm{x}^{\mathrm{3}} \right)\right)}{\mathrm{x}^{\mathrm{3}} }×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{1}+\frac{\mathrm{xsin}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} }+\frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{x}^{\mathrm{2}} }\right) \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{6}}×\mathrm{3}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\: \\ $$$$ \\ $$