Menu Close

lim-x-0-x-a-b-cos-x-c-sin-x-x-5-1-find-the-value-a-b-and-c-




Question Number 38893 by gunawan last updated on 01/Jul/18
lim_(x→0)  ((x(a+b cos x)−c sin x)/x^5 )=1  find the value a,b, and c
limx0x(a+bcosx)csinxx5=1findthevaluea,b,andc
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Jul/18
lim_(x→0) ((ax+bx(1−(x^2 /(2!))+(x^4 /(4!))+...)−c((x/1)−(x^3 /(3!))+(x^5 /(5!))+..))/x^5 )  =lim_(x→0) ((x(a+b−c)+b(((−x^3 )/(2!))+(x^5 /(4!))+..)−c(−(x^3 /(3!))+(x^5 /(5!))..))/x^5 )  ((lim)/(x→0))(((a+b−c)+b(−((3x^2 )/(2!))+((5x^4 )/(4!))+..)−c(((−3x^2 )/(3!))+((5x^4 )/(5!))+..)/(5x^4 ))  so for((0/0)) form a+b−c=0.....eqn 1  =lim_(x→0) ((b(−(3/(2!))+((5x^2 )/(4!))+..)−c(((−3)/(3!))+((5x^2 )/(5!))+..))/(5x^2 ))  b(−(3/(2!)))+c((3/(3!)))=0   for((0/0)) form  (c/2)−((3b)/2)=0   c=3b  lim_(x→0) ((b(((5x^2 )/(4!))+..)−c(((5x^2 )/(5!))+..))/(5x^2 ))=1    (b/(4!))−(c/(5!))=1     (b/(24))−(c/(120))=1  (b/(24))−((3b)/(120))=1     (b/(24))−(b/(40))=1     so ((5b−3b)/(3×8×5))=1    2b=3×8×5    b=60    c=3×60=180  a+b−c=0   a=c−b  a=180−60=120
limx0ax+bx(1x22!+x44!+)c(x1x33!+x55!+..)x5=limx0x(a+bc)+b(x32!+x54!+..)c(x33!+x55!..)x5limx0(a+bc)+b(3x22!+5x44!+..)c(3x23!+5x45!+..5x4sofor(00)forma+bc=0..eqn1=limx0b(32!+5x24!+..)c(33!+5x25!+..)5x2b(32!)+c(33!)=0for(00)formc23b2=0c=3blimx0b(5x24!+..)c(5x25!+..)5x2=1b4!c5!=1b24c120=1b243b120=1b24b40=1so5b3b3×8×5=12b=3×8×5b=60c=3×60=180a+bc=0a=cba=18060=120

Leave a Reply

Your email address will not be published. Required fields are marked *