Menu Close

lim-x-0-x-a-b-x-where-a-b-gt-0-please-




Question Number 170057 by nimnim last updated on 15/May/22
lim_(x→0)  (x/a)⌊(b/x)⌋  where a,b>0  please....
$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{{x}}{{a}}\lfloor\frac{{b}}{{x}}\rfloor\:\:{where}\:{a},{b}>\mathrm{0} \\ $$$${please}…. \\ $$
Answered by mahdipoor last updated on 15/May/22
get (b/x)=t    lim_(x→0) (x/a)[(b/x)]=lim_(x→0) (b/a)×(([(b/x)])/(b/x))=(b/a)lim_(t→±∞) (([t])/t)=(b/a)
$${get}\:\frac{{b}}{{x}}={t}\:\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}}{{a}}\left[\frac{{b}}{{x}}\right]=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{b}}{{a}}×\frac{\left[\frac{{b}}{{x}}\right]}{\frac{{b}}{{x}}}=\frac{{b}}{{a}}\underset{{t}\rightarrow\pm\infty} {\mathrm{lim}}\frac{\left[{t}\right]}{{t}}=\frac{{b}}{{a}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *