Menu Close

lim-x-0-x-arctan-t-2-dt-1-x-2-




Question Number 160218 by qaz last updated on 26/Nov/21
lim_(x→+∞) ((∫_0 ^x (arctan t)^2 dt)/( (√(1+x^2 ))))=?
$$\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\int_{\mathrm{0}} ^{\mathrm{x}} \left(\mathrm{arctan}\:\mathrm{t}\right)^{\mathrm{2}} \mathrm{dt}}{\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}=? \\ $$
Answered by mathmax by abdo last updated on 26/Nov/21
=lim_(x→+∞)     ((arctan^2 x)/((2x)/(2(√(1+x^2 ))))) =lim_(x→+∞) arctan^2 x×((√(1+x^2 ))/x)  =lim_(x→+∞)   arctan^2 x×(√((1+x^2 )/x^2 )) =lim_(x→+∞)  arctan^2 x.(√(1+(1/x^2 )))  =(π^2 /4)
$$=\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \:\:\:\:\frac{\mathrm{arctan}^{\mathrm{2}} \mathrm{x}}{\frac{\mathrm{2x}}{\mathrm{2}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}}\:=\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \mathrm{arctan}^{\mathrm{2}} \mathrm{x}×\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}{\mathrm{x}} \\ $$$$=\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \:\:\mathrm{arctan}^{\mathrm{2}} \mathrm{x}×\sqrt{\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} }}\:=\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \:\mathrm{arctan}^{\mathrm{2}} \mathrm{x}.\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *