Menu Close

lim-x-0-x-sinx-x-3-solve-without-hopital-and-any-series-




Question Number 191078 by sciencestudentW last updated on 17/Apr/23
lim_(x→0) ((x−sinx)/x^3 )=?  solve without hopital and any series.
limx0xsinxx3=?solvewithouthopitalandanyseries.
Answered by mehdee42 last updated on 17/Apr/23
if x→0  ⇒x−sinx ∼ (1/6)x^3
ifx0xsinx16x3
Answered by mathlove last updated on 18/Apr/23
l=lim_(x→0) ((x−sinx)/x^3 )  lim_(x→0) ((x−2sin(x/2)cos(x/2))/x^3 )=2lim_(x→0) (((x/2)−sin(x/2)cos(x/2)−sin(x/2)+sin(x/2))/x^3 )  2lim_(x→0) (((x/2)−sin(x/2))/x^3 )+2lim_(x→0) ((sin(x/2)−sin(x/2)cos(x/2))/x^3 )  2lim_(x→0) (((x/2)−sin(x/2))/(8((x/2))^3 ))+2lim_(x→0) ((sin(x/2)(1−cos(x/2)))/(8((x/2))((x/2))^2 ))  (1/4)lim_(x→0) (((x/2)−sin(x/2))/(((x/2))^3 ))+(1/4)lim_(x→0) ((sin(x/2))/(x/2))lim_(x→0) ((1−cos(x/2))/(((x/2))^2 ))  (1/4)l+(1/4)×(1/2)⇒l−(1/4)l=(1/8)  l=(1/6)  lim_(x→0) ((x−sinx)/x^3 )=(1/6)
l=limx0xsinxx3limx0x2sinx2cosx2x3=2limx0x2sinx2cosx2sinx2+sinx2x32limx0x2sinx2x3+2limx0sinx2sinx2cosx2x32limx0x2sinx28(x2)3+2limx0sinx2(1cosx2)8(x2)(x2)214limx0x2sinx2(x2)3+14limx0sinx2x2limx01cosx2(x2)214l+14×12l14l=18l=16limx0xsinxx3=16

Leave a Reply

Your email address will not be published. Required fields are marked *