Menu Close

lim-x-0-x-tan-x-x-sin-x-cos-x-1-




Question Number 18587 by Joel577 last updated on 25/Jul/17
lim_(x→0)  ((x . tan x)/(x sin x − cos x + 1))
limx0x.tanxxsinxcosx+1
Commented by Joel577 last updated on 25/Jul/17
⇒ lim_(x→0)  ((x . tan x)/(x sin x + 2sin^2  (1/2)x)) = lim_(x→0)  ((x . tan x)/(sin x (x + 2sin (1/2)x)))  ⇒ lim_(x→0)  (x/(sin x)) . lim_(x→0)  ((tan x)/(x + 2sin (1/2)x))  ⇒ 1 . lim_(x→0)  (((tan x)/x)/((x + 2sin (1/2)x)/x)) = 1 . (1/(1 + 1)) = (1/2)  Is this correct?
limx0x.tanxxsinx+2sin212x=limx0x.tanxsinx(x+2sin12x)limx0xsinx.limx0tanxx+2sin12x1.limx0tanxxx+2sin12xx=1.11+1=12Isthiscorrect?
Commented by mrW1 last updated on 26/Jul/17
no, you made a mistake.  ⇒ lim_(x→0)  ((x . tan x)/(x sin x + 2sin^2  (1/2)x))   ⇒ lim_(x→0)   (((tan x)/x)/(((sin x)/x) +(1/2) (((sin (x/2))/(x/2)))^2 ))   ⇒ (1/(1+(1/2)×1^2 ))=(2/3)
no,youmadeamistake.limx0x.tanxxsinx+2sin212xlimx0tanxxsinxx+12(sinx2x2)211+12×12=23

Leave a Reply

Your email address will not be published. Required fields are marked *