Menu Close

lim-x-0-x-tan-x-x-tan-2-x-




Question Number 131033 by greg_ed last updated on 31/Jan/21
lim_(x→0)  ((x−tan x)/(x tan^2 x)) = ?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}−\mathrm{tan}\:{x}}{{x}\:\mathrm{tan}^{\mathrm{2}} {x}}\:=\:? \\ $$
Commented by greg_ed last updated on 02/Feb/21
without the limited development method !
$$\boldsymbol{\mathrm{without}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{limited}}\:\boldsymbol{\mathrm{development}}\:\boldsymbol{\mathrm{method}}\:! \\ $$
Answered by Dwaipayan Shikari last updated on 31/Jan/21
lim_(x→0) ((xcosx−sinx)/(xsin^2 x))=((x(1−(x^2 /2))−x+(x^3 /6))/x^3 )=−(x/(3x))=−(1/3)
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{xcosx}−{sinx}}{{xsin}^{\mathrm{2}} {x}}=\frac{{x}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)−{x}+\frac{{x}^{\mathrm{3}} }{\mathrm{6}}}{{x}^{\mathrm{3}} }=−\frac{{x}}{\mathrm{3}{x}}=−\frac{\mathrm{1}}{\mathrm{3}} \\ $$
Answered by mathmax by abdo last updated on 31/Jan/21
we have tanx ∼x+(x^3 /3) ⇒x−tanx ∼−(x^3 /3) also xtan^2 x∼x^3  ⇒  ((x−tanx)/(xtan^2 x)) ∼−(x^3 /(3x^3 ))=−(1/3) ⇒lim_(x→0)  ((x−tanx)/(xtan^2 x))=−(1/3)
$$\mathrm{we}\:\mathrm{have}\:\mathrm{tanx}\:\sim\mathrm{x}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}\:\Rightarrow\mathrm{x}−\mathrm{tanx}\:\sim−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}\:\mathrm{also}\:\mathrm{xtan}^{\mathrm{2}} \mathrm{x}\sim\mathrm{x}^{\mathrm{3}} \:\Rightarrow \\ $$$$\frac{\mathrm{x}−\mathrm{tanx}}{\mathrm{xtan}^{\mathrm{2}} \mathrm{x}}\:\sim−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3x}^{\mathrm{3}} }=−\frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{x}−\mathrm{tanx}}{\mathrm{xtan}^{\mathrm{2}} \mathrm{x}}=−\frac{\mathrm{1}}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *