Question Number 60006 by meme last updated on 17/May/19
$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\frac{{x}^{{x}} }{{x}}=? \\ $$
Commented by maxmathsup by imad last updated on 17/May/19
$${let}\:{A}\left({x}\right)\:=\frac{{x}^{{x}} }{{x}}\:\:\:{for}\:{x}>\mathrm{0}\:\Rightarrow{A}\left({x}\right)\:=\frac{{e}^{{xln}\left({x}\right)} }{{x}}\:\:\:\:{we}\:{have}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:{e}^{{xln}\left({x}\right)} =\mathrm{1}\:\:{but} \\ $$$${e}^{{u}} \:\sim\mathrm{1}\:\:+{u}\:\:\Rightarrow{e}^{{xlnx}} \sim\mathrm{1}+{xln}\left({x}\right)\:\Rightarrow\frac{{e}^{{xln}\left({x}\right)} }{{x}}\sim\frac{\mathrm{1}}{{x}}\:+{ln}\left({x}\right)\:=\frac{\mathrm{1}+{xln}\left({x}\right)}{{x}}\:\rightarrow+\infty\left({x}\rightarrow\mathrm{0}^{+} \right) \\ $$$$\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:{A}\left({x}\right)\:=+\infty \\ $$$${another}\:{way}\:\:{we}\:{have}\:{A}\left({x}\right)={x}^{{x}−\mathrm{1}} \:={e}^{\left({x}−\mathrm{1}\right){ln}\left({x}\right)} \:={e}^{{xln}\left({x}\right)−{ln}\left({x}\right)} \:\rightarrow{e}^{+\infty} =+\infty \\ $$$$\left({x}\rightarrow\mathrm{0}^{+} \right) \\ $$
Commented by kaivan.ahmadi last updated on 19/May/19
$${lim}_{{x}\rightarrow\mathrm{0}} \:\:{x}^{{x}−\mathrm{1}} =\left(\mathrm{0}\right)^{−\mathrm{1}} =+\infty \\ $$
Commented by maxmathsup by imad last updated on 17/May/19
$$\left.{sir}\:\:{x}^{{x}} \:\:{is}\:{defined}\:{on}\:\right]\mathrm{0},+\infty\left[\right. \\ $$
Commented by kaivan.ahmadi last updated on 19/May/19
$${thank}\:{u},\:{is}\:{it}\:{true}\:{now}? \\ $$