Menu Close

lim-x-0-x-x-x-




Question Number 60006 by meme last updated on 17/May/19
lim_(x→0) (x^x /x)=?
limx0xxx=?
Commented by maxmathsup by imad last updated on 17/May/19
let A(x) =(x^x /x)   for x>0 ⇒A(x) =(e^(xln(x)) /x)    we have lim_(x→0^+ )    e^(xln(x)) =1  but  e^u  ∼1  +u  ⇒e^(xlnx) ∼1+xln(x) ⇒(e^(xln(x)) /x)∼(1/x) +ln(x) =((1+xln(x))/x) →+∞(x→0^+ )  ⇒lim_(x→0^+ )    A(x) =+∞  another way  we have A(x)=x^(x−1)  =e^((x−1)ln(x))  =e^(xln(x)−ln(x))  →e^(+∞) =+∞  (x→0^+ )
letA(x)=xxxforx>0A(x)=exln(x)xwehavelimx0+exln(x)=1buteu1+uexlnx1+xln(x)exln(x)x1x+ln(x)=1+xln(x)x+(x0+)limx0+A(x)=+anotherwaywehaveA(x)=xx1=e(x1)ln(x)=exln(x)ln(x)e+=+(x0+)
Commented by kaivan.ahmadi last updated on 19/May/19
lim_(x→0)   x^(x−1) =(0)^(−1) =+∞
limx0xx1=(0)1=+
Commented by maxmathsup by imad last updated on 17/May/19
sir  x^x   is defined on ]0,+∞[
sirxxisdefinedon]0,+[
Commented by kaivan.ahmadi last updated on 19/May/19
thank u, is it true now?
thanku,isittruenow?

Leave a Reply

Your email address will not be published. Required fields are marked *