Question Number 98858 by M±th+et+s last updated on 16/Jun/20
$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}…….}}}} \\ $$$$ \\ $$
Commented by Tinku Tara last updated on 17/Jun/20
$$\mathrm{Hi}\:\mathrm{David} \\ $$$$\mathrm{Can}\:\mathrm{you}\:\mathrm{update}\:\mathrm{app}\:\mathrm{to}\:\mathrm{latesy}\:\mathrm{version}. \\ $$$$\mathrm{Some}\:\mathrm{time}\:\mathrm{un}\:\mathrm{between}\:\mathrm{problem} \\ $$$$\mathrm{related}\:\mathrm{to}\:\mathrm{reducing}\:\mathrm{font}\:\mathrm{size} \\ $$$$\mathrm{in}\:\mathrm{successive}\:\mathrm{edit}\:\mathrm{was}\:\mathrm{fixed}. \\ $$
Commented by DavidClassic last updated on 16/Jun/20
$${let}\:{u}=\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+….}}}} \\ $$$${u}^{\mathrm{2}} ={x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+..}}}} \\ $$$${u}^{\mathrm{2}} ={x}+{u} \\ $$$${u}^{\mathrm{2}} −{u}−{x}=\mathrm{0} \\ $$$${u}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$$\:_{{x}\rightarrow\mathrm{0}} ^{{lim}} {u}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}−\mathrm{0}}}{\mathrm{2}}=\frac{\mathrm{1}\pm\mathrm{1}}{\mathrm{2}}=\mathrm{1}\:{or}\:\mathrm{0} \\ $$$${by}:\:\mathrm{O}{gunsanwo}\:{David}\:{O}.\:\:\:{Courtesy}:\:\mathrm{D}{ave}\:{Classics} \\ $$
Commented by Aziztisffola last updated on 16/Jun/20
$$\:\mathrm{x}\:\mathrm{and}\:\mathrm{u}\left(\mathrm{x}\right)\:\mathrm{are}\:\mathrm{positive}\:\mathrm{then}\:\mathrm{u}\left(\mathrm{x}\right)=\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4x}}}{\mathrm{2}} \\ $$$$\:\mathrm{the}\:\mathrm{limit}\:\mathrm{is}\:\mathrm{unique}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{1} \\ $$
Commented by Rasheed.Sindhi last updated on 17/Jun/20
$$\mathcal{T}{inkutara},{the}\:{developer} \\ $$$${Sir},{I}'{ve}\:{a}\:{problem}.{In}\:{editing} \\ $$$${mode}\:{if}\:{the}\:{screen}\:{is}\:{turned} \\ $$$${into}\:{landscape}\:{unintentionally} \\ $$$${and}\:{I}\:{turn}\:{back}\:{into}\:{portrait} \\ $$$${mode}\:{the}\:{down}\:{half}\:{screen}\:{is} \\ $$$${cleared}!\:{It}\:{continues}\:{in}\:{various} \\ $$$${vhersions}\:{even}\:{in}\:\mathrm{2}.\mathrm{084}.{Thanks}. \\ $$$${See}\:{screenshot}\:{below}. \\ $$
Commented by Rasheed.Sindhi last updated on 17/Jun/20
Commented by Tinku Tara last updated on 17/Jun/20
$$\mathrm{Does}\:\mathrm{it}\:\mathrm{happen}\:\mathrm{every}\:\mathrm{time}? \\ $$$$\mathrm{Please}\:\mathrm{email}\:\mathrm{phone}\:\mathrm{make}\:\mathrm{and}\:\mathrm{model}, \\ $$$$\mathrm{android}\:\mathrm{versiin}. \\ $$
Commented by Rasheed.Sindhi last updated on 17/Jun/20
$${Yes}\:{sir}\:{every}\:{time}. \\ $$$${Phone}\:{make}:\:{Vivo} \\ $$$${Model}:\:{Vivo}\:{S}\mathrm{1} \\ $$$${android}\:{version}:\mathrm{9} \\ $$
Commented by MJS last updated on 17/Jun/20
$$\mathrm{same}\:\mathrm{problem}\:\mathrm{here}.\:\mathrm{but}\:\mathrm{the}\:\mathrm{lines}\:\mathrm{are}\:\mathrm{not} \\ $$$$\mathrm{lost},\:\mathrm{it}'\mathrm{s}\:\mathrm{just}\:\mathrm{impossible}\:\mathrm{to}\:\mathrm{scroll}\:\mathrm{there}.\:\mathrm{if} \\ $$$$\mathrm{you}\:\mathrm{save}\:\mathrm{the}\:\mathrm{post}\:\mathrm{they}\:\mathrm{are}\:\mathrm{there}\:\mathrm{again} \\ $$
Commented by mr W last updated on 17/Jun/20
$${i}\:{have}\:{the}\:{same}\:{problem}.\:{but}\:{for}\:{me} \\ $$$${the}\:{editor}\:{in}\:{landscape}\:{modus}\:{is}\:{not} \\ $$$${a}\:{real}\:{helper}. \\ $$
Commented by Tinku Tara last updated on 17/Jun/20
$$\mathrm{Ok}.\:\mathrm{So}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{occurs} \\ $$$$\mathrm{when}\:\mathrm{you}\:\mathrm{are}\:\mathrm{rotating}\:\mathrm{phone}\:\mathrm{in} \\ $$$$\mathrm{middle}\:\mathrm{of}\:\mathrm{editing}.\:\mathrm{Mostly}\:\mathrm{handling} \\ $$$$\mathrm{is}\:\mathrm{missing}\:\mathrm{for}\:\mathrm{these}\:\mathrm{cases}. \\ $$$$\mathrm{Will}\:\mathrm{fix}. \\ $$
Commented by Tinku Tara last updated on 17/Jun/20
$$\mathrm{landscape}\:\mathrm{mode}\:\mathrm{request}\:\mathrm{came}\:\mathrm{from} \\ $$$$\mathrm{some}\:\mathrm{school}\:\mathrm{where}\:\mathrm{rotation}\:\mathrm{of} \\ $$$$\mathrm{device}\:\mathrm{in}\:\mathrm{portrait}\:\mathrm{mode}\:\mathrm{was}\:\mathrm{not} \\ $$$$\mathrm{possible}. \\ $$$$\mathrm{It}\:\mathrm{is}\:\mathrm{not}\:\mathrm{really}\:\mathrm{useful}\:\mathrm{for}\:\mathrm{typing} \\ $$$$\mathrm{on}\:\mathrm{phones}. \\ $$
Commented by Tinku Tara last updated on 26/Jun/20
$$\mathrm{This}\:\mathrm{issue}\:\mathrm{has}\:\mathrm{been}\:\mathrm{addressed}\:\mathrm{in} \\ $$$$\mathrm{latest}\:\mathrm{version}\:\mathrm{2}.\mathrm{085}. \\ $$$$\mathrm{Device}\:\mathrm{rotation}\:\mathrm{will}\:\mathrm{not} \\ $$$$\mathrm{rotate}\:\mathrm{editor}\:\mathrm{screen}.\: \\ $$$$\mathrm{Let}\:\mathrm{us}\:\mathrm{know}\:\mathrm{if}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{still} \\ $$$$\mathrm{exists}. \\ $$
Answered by Aziztisffola last updated on 16/Jun/20
$$\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\sqrt{…..}}}} \\ $$$$\:\Leftrightarrow\mathrm{f}^{\mathrm{2}} \left(\mathrm{x}\right)=\mathrm{x}+\mathrm{f}\left(\mathrm{x}\right)\Leftrightarrow\mathrm{f}^{\mathrm{2}} \left(\mathrm{x}\right)−\mathrm{f}\left(\mathrm{x}\right)−\mathrm{x}=\mathrm{0} \\ $$$$\bigtriangleup=\mathrm{1}+\mathrm{4x}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4x}}}{\mathrm{2}}\:\left(\mathrm{x}>\mathrm{0}\:\mathrm{and}\:\mathrm{f}\left(\mathrm{x}\right)>\mathrm{0}\right) \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}f}\left(\mathrm{x}\right)=\frac{\mathrm{1}+\sqrt{\mathrm{1}}}{\mathrm{2}}=\mathrm{1} \\ $$
Commented by mr W last updated on 16/Jun/20
$$\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}f}\left(\mathrm{x}\right)=\mathrm{1}\:\neq\:\mathrm{f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$
Answered by MAB last updated on 16/Jun/20
$${very}\:{informal}\:{resolution} \\ $$$${let}\:{u}=\sqrt{{x}+\sqrt{{x}+\sqrt{{x}…}}} \\ $$$${we}\:{have} \\ $$$${u}=\sqrt{{x}+{u}} \\ $$$${in}\:{other}\:{words} \\ $$$${u}^{\mathrm{2}} −{u}−{x}=\mathrm{0} \\ $$$${then} \\ $$$${u}=\frac{\mathrm{1}\mp\sqrt{\mathrm{1}+\mathrm{4}{x}}}{\mathrm{2}} \\ $$$${as}\:{x}\rightarrow\mathrm{0}\:{we}\:{get} \\ $$$${u}=\mathrm{0}\:{or}\:{u}=\mathrm{1} \\ $$
Answered by mathmax by abdo last updated on 16/Jun/20
$$\mathrm{let}\:\mathrm{y}\left(\mathrm{x}\right)\:=\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\sqrt{\mathrm{x}}+…}} \\ $$$$\Rightarrow\mathrm{y}^{\mathrm{2}} \left(\mathrm{x}\right)\:=\mathrm{x}+\mathrm{y}\left(\mathrm{x}\right)\:\:\mathrm{with}\:\mathrm{x}\geqslant\mathrm{0}\:\Rightarrow\mathrm{y}^{\mathrm{2}} −\mathrm{y}−\mathrm{x}\:=\mathrm{0} \\ $$$$\Delta\:=\mathrm{1}+\mathrm{4x}\:>\mathrm{0}\:\Rightarrow\mathrm{y}_{\mathrm{1}} =\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4x}}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{y}_{\mathrm{2}} =\frac{\mathrm{1}−\sqrt{\mathrm{1}+\mathrm{4x}}}{\mathrm{2}}\left(\mathrm{y}_{\mathrm{2}} <\mathrm{0}\:\mathrm{to}\:\mathrm{eliminate}\right)\:\Rightarrow \\ $$$$\mathrm{y}\left(\mathrm{x}\right)\:=\frac{\mathrm{1}+\sqrt{\mathrm{4x}+\mathrm{1}}}{\mathrm{2}}\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\:\:\mathrm{y}\left(\mathrm{x}\right)\:=\mathrm{1} \\ $$