Menu Close

lim-x-0-x-x-x-x-pleas-help-




Question Number 163931 by mathlove last updated on 12/Jan/22
lim_(x→0) (x^x^x  /x)=?  pleas  help
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{{x}^{{x}} } }{{x}}=? \\ $$$${pleas}\:\:{help} \\ $$
Answered by mahdipoor last updated on 12/Jan/22
lim_(x→0) ((lnx)/(1/(x^x −1)))=((−∞)/∞)⇒^(hop) lim_(x→0)  ((1/x)/((−x^x (xlnx+1))/((x^x −1)^2 )))=  ((lim_(x→0) (((x^x −1)^2 )/x))/(lim_(x→0) −x^x (xlnx+1)))=((lim_(x→0) ((2(x^x −1)x^x (xlnx+1))/1))/(−1(0+1)))=  (((2×0×1×(0+1))/1)/(−1))=0  ⇒lim_(x→0) (x^x^x  /x)=lim_(x→0) x^((x^x −1)) =e^(lim_(x→0) ((lnx)/(1/(x^x −1)))) =e^0 =1
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{lnx}}{\frac{\mathrm{1}}{{x}^{{x}} −\mathrm{1}}}=\frac{−\infty}{\infty}\overset{{hop}} {\Rightarrow}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{{x}}}{\frac{−{x}^{{x}} \left({xlnx}+\mathrm{1}\right)}{\left({x}^{{x}} −\mathrm{1}\right)^{\mathrm{2}} }}= \\ $$$$\frac{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({x}^{{x}} −\mathrm{1}\right)^{\mathrm{2}} }{{x}}}{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}−{x}^{{x}} \left({xlnx}+\mathrm{1}\right)}=\frac{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}\left({x}^{{x}} −\mathrm{1}\right){x}^{{x}} \left({xlnx}+\mathrm{1}\right)}{\mathrm{1}}}{−\mathrm{1}\left(\mathrm{0}+\mathrm{1}\right)}= \\ $$$$\frac{\frac{\mathrm{2}×\mathrm{0}×\mathrm{1}×\left(\mathrm{0}+\mathrm{1}\right)}{\mathrm{1}}}{−\mathrm{1}}=\mathrm{0} \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{{x}^{{x}} } }{{x}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{x}^{\left({x}^{{x}} −\mathrm{1}\right)} ={e}^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{lnx}}{\mathrm{1}/\left({x}^{{x}} −\mathrm{1}\right)}} ={e}^{\mathrm{0}} =\mathrm{1} \\ $$
Commented by mathlove last updated on 12/Jan/22
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *