Menu Close

lim-x-1-1-log-e-x-x-x-1-




Question Number 28151 by tawa tawa last updated on 21/Jan/18
lim_(x→1)   ((1/(log_e x)) − (x/(x − 1)))
limx1(1logexxx1)
Commented by çhëý böý last updated on 21/Jan/18
lim_(x→1)  ((((x−1)−xlnx)/((x−1)lnx)))=(0/0)  lim_(x→1)  (((x−((x/x)+lnx))/(lnx+(((x−1))/( x )))))  lim_(x→1 )   (((x(x−1+1nx))/(xlnx+(x−1))))=(0/0)  lim_(x→1)  ((((x−1+lnx)+x(1−0+(1/x)))/(1+lnx+1)))  lim_(x→1)  (((0+0+2)/(1+0+1)))=(2/2)=1
limx1((x1)xlnx(x1)lnx)=00limx1(x(xx+lnx)lnx+(x1)x)limx1(x(x1+1nx)xlnx+(x1))=00limx1((x1+lnx)+x(10+1x)1+lnx+1)limx1(0+0+21+0+1)=22=1
Commented by tawa tawa last updated on 21/Jan/18
God bless you sir
Godblessyousir
Commented by abdo imad last updated on 21/Jan/18
=lim_(x→1)  ( (1/(lnx)) −(x/(x−1))) let use the ch.x−1=t  x→1⇔ t→o   lim(...)= lim_(t→0) ((1/(ln(1+t))) −((1+t)/t))  =lim_(t→0)  ((t −(1+t)ln(1+t))/(tln(1+t)))let take f(t)=t −(1+t)ln(1+t)  and g(t)=tln(1+t) we have   f^′ (t)= 1−(ln(1+t)+1)=−ln(1+t) and f^(′′) (t) =((−1)/(1+t))  g^′ (t)=ln(1+t) +(t/(1+t))=ln(1+t) +1−(1/(1+t)) and  g^(′′) (t)= (1/(1+t)) +(1/((1+t)^2 ))  so  lim_(x→1) ((1/(lnx)) −(x/(x−1)))=lim_(t→0)   ((f^(′′) (t))/(g^(′′) (t))) =  ((−1)/2) .
=limx1(1lnxxx1)letusethech.x1=tx1tolim()=limt0(1ln(1+t)1+tt)=limt0t(1+t)ln(1+t)tln(1+t)lettakef(t)=t(1+t)ln(1+t)andg(t)=tln(1+t)wehavef(t)=1(ln(1+t)+1)=ln(1+t)andf(t)=11+tg(t)=ln(1+t)+t1+t=ln(1+t)+111+tandg(t)=11+t+1(1+t)2solimx1(1lnxxx1)=limt0f(t)g(t)=12.
Commented by abdo imad last updated on 21/Jan/18
we have used hospital theorem.
wehaveusedhospitaltheorem.

Leave a Reply

Your email address will not be published. Required fields are marked *