Menu Close

lim-x-1-1-tan-1-x-pi-4-2-x-1-




Question Number 179503 by cortano1 last updated on 30/Oct/22
       lim_(x→1)  ((1/(tan^(−1) (x)−(π/4))) −(2/(x−1))) =?
$$\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)−\frac{\pi}{\mathrm{4}}}\:−\frac{\mathrm{2}}{\mathrm{x}−\mathrm{1}}\right)\:=? \\ $$
Commented by CElcedricjunior last updated on 30/Oct/22
lim_(x→1) (((x−1−2arctan(x)+𝛑/2)/((x−1)(arctanx−(𝛑/4)))))=(0/0)=FI  to apply hospital  lim_(x→1) ((1−(2/(1+x^2 )))/(arctan(x)−(𝛑/2)+((x−1)/(1+x^2 ))))=(0/0)  lim_(x→1) (((4x)/((1+x^2 )^2 ))/((1/(1+x^2 ))+((1+2x−x^2 )/((1+x^2 )^2 ))))=(1/((1/2)+(1/2)))=1
$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\frac{\boldsymbol{\mathrm{x}}−\mathrm{1}−\mathrm{2}\boldsymbol{\mathrm{arctan}}\left(\boldsymbol{\mathrm{x}}\right)+\boldsymbol{\pi}/\mathrm{2}}{\left(\boldsymbol{\mathrm{x}}−\mathrm{1}\right)\left(\boldsymbol{\mathrm{arctanx}}−\frac{\boldsymbol{\pi}}{\mathrm{4}}\right)}\right)=\frac{\mathrm{0}}{\mathrm{0}}=\boldsymbol{\mathrm{FI}} \\ $$$$\boldsymbol{{to}}\:\boldsymbol{{apply}}\:\boldsymbol{{hospital}} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{1}−\frac{\mathrm{2}}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }}{\boldsymbol{{arctan}}\left(\boldsymbol{{x}}\right)−\frac{\boldsymbol{\pi}}{\mathrm{2}}+\frac{\boldsymbol{\mathrm{x}}−\mathrm{1}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }}=\frac{\mathrm{0}}{\mathrm{0}} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\frac{\mathrm{4}\boldsymbol{\mathrm{x}}}{\left(\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)^{\mathrm{2}} }}{\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }+\frac{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\left(\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)^{\mathrm{2}} }}=\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}}=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *