Menu Close

lim-x-1-2-cot-pix-2x-2-x-1-




Question Number 122548 by bramlexs22 last updated on 18/Nov/20
  lim_(x→1/2)  (((cot (πx))/(2x^2 +x−1)))=?
limx1/2(cot(πx)2x2+x1)=?
Answered by liberty last updated on 18/Nov/20
 lim_(x→1/2)  ((cot (πx))/((2x−1)(x+1))) = lim_(x→1/2)  (1/(x+1)).lim_((((2x−1)/2))→0) ((cot (πx))/((2x−1)))  = (2/3) × lim_(X→0)  ((cot (π(((2X+1)/2))))/(2X))       ; [ let ((2x−1)/2)=X ]  = (1/3) × lim_(X→0)  ((cot ((π/2)+πX))/X)  = (1/3) × lim_(X→0)  ((−tan (πX))/X) = −(π/3).▲
limx1/2cot(πx)(2x1)(x+1)=limx1/21x+1.lim(2x12)0cot(πx)(2x1)=23×limX0cot(π(2X+12))2X;[let2x12=X]=13×limX0cot(π2+πX)X=13×limX0tan(πX)X=π3.
Answered by Dwaipayan Shikari last updated on 18/Nov/20
lim_(x→(1/2)) ((cos(πx))/(sin(πx)(2x−1)(x+1)))  lim_(x→(1/2)) (2/3) ((sin((π/2)−πx))/((2x−1)))=(2/3).((π(1−2x))/(2(2x−1)))=−(π/3)
limx12cos(πx)sin(πx)(2x1)(x+1)limx1223sin(π2πx)(2x1)=23.π(12x)2(2x1)=π3

Leave a Reply

Your email address will not be published. Required fields are marked *