Menu Close

lim-x-1-2x-3-x-1-64-x-3-1-




Question Number 84330 by M±th+et£s last updated on 11/Mar/20
lim_(x→1) (((2x^3 +x+1)−64)/(x^3 −1))
$$\underset{{x}\rightarrow\mathrm{1}} {{lim}}\frac{\left(\mathrm{2}{x}^{\mathrm{3}} +{x}+\mathrm{1}\right)−\mathrm{64}}{{x}^{\mathrm{3}} −\mathrm{1}} \\ $$
Commented by M±th+et£s last updated on 11/Mar/20
typo (2x^3 +x+1)^3
$${typo}\:\left(\mathrm{2}{x}^{\mathrm{3}} +{x}+\mathrm{1}\right)^{\mathrm{3}} \\ $$
Commented by niroj last updated on 12/Mar/20
  _(x→1) ^(lim)  (((2x^3 +x+1)^3 −64)/(x^3 −1))    _(x→1) ^(lim)   ((3(2x^3 +x+1)^2 (6x^2 +1))/(3x^2 ))   = (((2.1+1+1)^2 .(6.1+1))/1)=16.7   = 112.  now correlation.
$$\:\underset{\mathrm{x}\rightarrow\mathrm{1}} {\overset{\mathrm{lim}} {\:}}\:\frac{\left(\mathrm{2x}^{\mathrm{3}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{64}}{\mathrm{x}^{\mathrm{3}} −\mathrm{1}}\: \\ $$$$\underset{\mathrm{x}\rightarrow\mathrm{1}} {\overset{\mathrm{lim}} {\:}}\:\:\frac{\mathrm{3}\left(\mathrm{2x}^{\mathrm{3}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{6x}^{\mathrm{2}} +\mathrm{1}\right)}{\mathrm{3x}^{\mathrm{2}} } \\ $$$$\:=\:\frac{\left(\mathrm{2}.\mathrm{1}+\mathrm{1}+\mathrm{1}\right)^{\mathrm{2}} .\left(\mathrm{6}.\mathrm{1}+\mathrm{1}\right)}{\mathrm{1}}=\mathrm{16}.\mathrm{7} \\ $$$$\:=\:\mathrm{112}.\:\:\mathrm{now}\:\mathrm{correlation}. \\ $$$$ \\ $$
Commented by jagoll last updated on 11/Mar/20
wrong sir
$$\mathrm{wrong}\:\mathrm{sir} \\ $$
Answered by jagoll last updated on 12/Mar/20
(2x^3 +x+1)^3 −4^3  =   (2x^3 +x+1−4)[(2x^3 +x+1)^2 +4(2x^3 +x+1)+16 ]  lim_(x→1)  [ (2x^3 +x+1)^2 +4(2x^3 +3+1)+16 ] ×  lim_(x→1)  ((2x^3 +x−3)/(x^3 −1)) =   48 × lim_(x→1)  (((x−1)(2x^2 +2x+3))/((x−1)(x^3 +x+1))) =   48 × (7/3) = 16×7 = 112
$$\left(\mathrm{2x}^{\mathrm{3}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{4}^{\mathrm{3}} \:=\: \\ $$$$\left(\mathrm{2x}^{\mathrm{3}} +\mathrm{x}+\mathrm{1}−\mathrm{4}\right)\left[\left(\mathrm{2x}^{\mathrm{3}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4}\left(\mathrm{2x}^{\mathrm{3}} +\mathrm{x}+\mathrm{1}\right)+\mathrm{16}\:\right] \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left[\:\left(\mathrm{2x}^{\mathrm{3}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4}\left(\mathrm{2x}^{\mathrm{3}} +\mathrm{3}+\mathrm{1}\right)+\mathrm{16}\:\right]\:× \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{2x}^{\mathrm{3}} +\mathrm{x}−\mathrm{3}}{\mathrm{x}^{\mathrm{3}} −\mathrm{1}}\:=\: \\ $$$$\mathrm{48}\:×\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{3}\right)}{\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{3}} +\mathrm{x}+\mathrm{1}\right)}\:=\: \\ $$$$\mathrm{48}\:×\:\frac{\mathrm{7}}{\mathrm{3}}\:=\:\mathrm{16}×\mathrm{7}\:=\:\mathrm{112} \\ $$
Commented by naka3546 last updated on 12/Mar/20
why  x →  0  ?  second  line  from  bottom  line .
$${why}\:\:{x}\:\rightarrow\:\:\mathrm{0}\:\:? \\ $$$${second}\:\:{line}\:\:{from}\:\:{bottom}\:\:{line}\:. \\ $$
Commented by jagoll last updated on 12/Mar/20
x→1
$$\mathrm{x}\rightarrow\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *