Menu Close

lim-x-1-cos-xcos-2xcos-3x-1-cos-x-




Question Number 109769 by Karani last updated on 25/Aug/20
lim_(x→Π) ((1−cos xcos 2xcos 3x)/(1−cos x))=?
$$\underset{{x}\rightarrow\Pi} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:{x}\mathrm{cos}\:\mathrm{2}{x}\mathrm{cos}\:\mathrm{3}{x}}{\mathrm{1}−\mathrm{cos}\:{x}}=? \\ $$
Answered by bemath last updated on 25/Aug/20
   △((♭ε)/(math))▽  lim_(x→π)  ((1−cos π.cos 2π.cos 3π)/(1−cos π)) = ((1−(−1)(1)(−1))/2)=0
$$\:\:\:\bigtriangleup\frac{\flat\epsilon}{{math}}\bigtriangledown \\ $$$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\pi.\mathrm{cos}\:\mathrm{2}\pi.\mathrm{cos}\:\mathrm{3}\pi}{\mathrm{1}−\mathrm{cos}\:\pi}\:=\:\frac{\mathrm{1}−\left(−\mathrm{1}\right)\left(\mathrm{1}\right)\left(−\mathrm{1}\right)}{\mathrm{2}}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *