Menu Close

lim-x-1-e-1-x-2-1-x-1-




Question Number 163961 by qaz last updated on 12/Jan/22
lim_(x→1^− )  (e^(1/(x^2 −1)) /(x−1))=?
$$\underset{\mathrm{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}\:\frac{\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}} }{\mathrm{x}−\mathrm{1}}=? \\ $$
Answered by bobhans last updated on 12/Jan/22
 x−1=u⇒x=u+1   = lim_(u→0)  (e^(1/(u^2 +2u)) /u) = lim_(u→0)  ((e^(1/u) .e^(1/(u+2)) )/u)   = (√e) ×lim_(u→0)  (e^(1/u) /u) = (√e) ×lim_(y→∞)  ye^y    =∞
$$\:\mathrm{x}−\mathrm{1}=\mathrm{u}\Rightarrow\mathrm{x}=\mathrm{u}+\mathrm{1} \\ $$$$\:=\:\underset{\mathrm{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{u}^{\mathrm{2}} +\mathrm{2u}}} }{\mathrm{u}}\:=\:\underset{\mathrm{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{u}}} .\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{u}+\mathrm{2}}} }{\mathrm{u}} \\ $$$$\:=\:\sqrt{\mathrm{e}}\:×\underset{\mathrm{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{u}}} }{\mathrm{u}}\:=\:\sqrt{\mathrm{e}}\:×\underset{\mathrm{y}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{ye}^{\mathrm{y}} \\ $$$$\:=\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *