Menu Close

lim-x-1-n-2-pi-1-n-2-2pi-1-n-2-npi-




Question Number 120978 by ZiYangLee last updated on 04/Nov/20
lim_(x→∞) ((1/(n^2 +π))+(1/(n^2 +2π))+…+(1/(n^2 +nπ)))=?
limx(1n2+π+1n2+2π++1n2+nπ)=?
Commented by Dwaipayan Shikari last updated on 04/Nov/20
If the question becomes  lim_(n→∞) ((1/(n+π))+(1/(n+2π))+....+(1/(n+nπ)))  lim_(n→∞) (1/n)Σ_(k=1) ^∞ (1/(1+((kπ)/n)))  =∫_0 ^1 (1/(1+πx))dx=(1/π)∫_0 ^π (du/(1+u))=(1/π)[log(1+u)]_0 ^π =(1/π)log(1+π)
Ifthequestionbecomeslimn(1n+π+1n+2π+.+1n+nπ)limn1nk=111+kπn=0111+πxdx=1π0πdu1+u=1π[log(1+u)]0π=1πlog(1+π)
Answered by Olaf last updated on 04/Nov/20
n^2 +kπ ≥ n^2 , k∈N^∗   (1/(n^2 +kπ)) ≤ (1/n^2 )  0 ≤ Σ_(k=1) ^n (1/(n^2 +kπ)) ≤ Σ_(k=1) ^n (1/n^2 ) = n×(1/n^2 ) = (1/n)  lim_(n→∞) (1/n) = 0  ⇒ lim_(n→∞) Σ_(k=1) ^n (1/(n^2 +kπ)) = 0
n2+kπn2,kN1n2+kπ1n20nk=11n2+kπnk=11n2=n×1n2=1nlimn1n=0limnnk=11n2+kπ=0

Leave a Reply

Your email address will not be published. Required fields are marked *