Question Number 34982 by rahul 19 last updated on 14/May/18
$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{nx}^{{n}+\mathrm{1}} −\left({n}+\mathrm{1}\right){x}^{{n}} +\mathrm{1}}{\left({e}^{{x}} −{e}\right)\mathrm{sin}\:\pi{x}}\:=\:? \\ $$
Commented by math khazana by abdo last updated on 15/May/18
$${for}\:{this}\:{case}\:{its}\:{better}\:{to}\:{use}\:{hospital}\:{theorem} \\ $$$${u}\left({x}\right)={nx}^{{n}+\mathrm{1}} \:−\left({n}+\mathrm{1}\right){x}^{{n}} \:+\mathrm{1} \\ $$$${v}\left({x}\right)=\:\left({e}^{{x}} \:−{e}\right){sin}\left(\pi{x}\right) \\ $$$${u}^{'} \left({x}\right)=\:{n}\left({n}+\mathrm{1}\right){x}^{{n}} −\:{n}\left({n}+\mathrm{1}\right){x}^{{n}−\mathrm{1}} \\ $$$${u}^{''} \left({x}\right)\:={n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)\:{x}^{{n}−\mathrm{1}} \:−{n}\left({n}+\mathrm{1}\right)\left({n}−\mathrm{1}\right){x}^{{n}−\mathrm{2}} \\ $$$${u}^{''} \left(\mathrm{1}\right)\:=\:{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)\:−{n}\left({n}^{\mathrm{2}} −\mathrm{1}\right)\:=\:{n}^{\mathrm{2}} \:+{n} \\ $$$${v}^{'} \left({x}\right)={e}^{{x}} {sin}\left(\pi{x}\right)\:\:+\pi\left({e}^{{x}} \:−{e}\right){cos}\left(\pi{x}\right) \\ $$$${v}^{''} \left({x}\right)=\:{e}^{{x}} \:{sin}\left(\pi{x}\right)\:+\pi\:{e}^{{x}} \:{cos}\left(\pi{x}\right)\:+\pi\:{e}^{{x}} \:{cos}\left(\pi{x}\right) \\ $$$$−\pi^{\mathrm{2}} \left({e}^{{x}} \:−{e}\right){sin}\left(\pi{x}\right)\:\Rightarrow \\ $$$${v}^{''} \left({x}\right)=\:−\pi{e}\:−\pi{e}\:=−\mathrm{2}\pi{e}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} \:\:\frac{{nx}^{{n}+\mathrm{1}} \:−\left({n}+\mathrm{1}\right){x}^{{n}} \:+\mathrm{1}}{\left({e}^{{x}} \:−{e}\right)\:{sin}\left(\pi{x}\right)}\:=−\frac{{n}^{\mathrm{2}} \:+{n}}{\mathrm{2}\pi{e}}\:. \\ $$
Commented by rahul 19 last updated on 16/May/18
Thank You prof. Abdo
Answered by ajfour last updated on 14/May/18
$$=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\:\frac{{n}\left({n}+\mathrm{1}\right){x}^{{n}−\mathrm{1}} \left({x}−\mathrm{1}\right)}{{e}^{{x}} \mathrm{sin}\:\pi{x}+\pi\left({e}^{{x}} −{e}\right)\mathrm{cos}\:\pi{x}} \\ $$$$\:=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\:\frac{{n}\left({n}+\mathrm{1}\right){x}^{{n}−\mathrm{1}} \left({x}−\mathrm{1}\right)}{{e}^{{x}} \mathrm{sin}\:\pi{x}+\pi{e}\left({e}^{{x}−\mathrm{1}} −\mathrm{1}\right)\mathrm{cos}\:\pi{x}} \\ $$$$=\:\frac{{n}\left({n}+\mathrm{1}\right)}{\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{e}^{{x}} \mathrm{sin}\:\pi{x}}{{x}−\mathrm{1}}+\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\pi{e}\mathrm{cos}\:\pi{x}\left({e}^{{x}−\mathrm{1}} −\mathrm{1}\right)}{{x}−\mathrm{1}}} \\ $$$$=\frac{{n}\left({n}+\mathrm{1}\right)}{\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{e}^{{x}} \mathrm{sin}\:\left[\pi+\pi\left({x}−\mathrm{1}\right)\right]}{{x}−\mathrm{1}}−\pi{e}} \\ $$$$=\frac{{n}\left({n}+\mathrm{1}\right)}{−\mathrm{2}\pi{e}}\:=\:\:\frac{−{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}\pi{e}}\:. \\ $$
Commented by rahul 19 last updated on 14/May/18
$$\mathscr{T}{hank}\:{you}\:{sir}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 14/May/18