Menu Close

lim-x-1-x-1-1-x-1-3-1-x-2-1-3-




Question Number 91133 by john santu last updated on 28/Apr/20
lim_(x→1)  (((x−1)+((1−x))^(1/(3  )) )/( ((1−x^2 ))^(1/(3  )) )) =
limx1(x1)+1x31x23=
Commented by john santu last updated on 28/Apr/20
lim_(x→1)  (((x−1)+(1−(x/3)))/( (2)^(1/(3  ))  (1−(x/3)))) =   (1/( (2)^(1/(3  )) )) ×lim_(x→1)  ((((2/3)x)/((2/3)x))) = (1/( (2)^(1/(3  )) )) .
limx1(x1)+(1x3)23(1x3)=123×limx1(23x23x)=123.
Commented by mathmax by abdo last updated on 28/Apr/20
let f(x) =(((x−1)+^3 (√(1−x)))/((^3 (√(1−x^2 )))))  changement^3 (√(1−x))=t give  1−x=t^3  ⇒f(x) =g(t) =((−t^3 +t)/(t (^3 (√(1+1−t^3 ))))) =((1−t^2 )/((2−t^3 )^(1/3) ))  =((1−t^2 )/((^3 (√2))(1−(t^3 /2))^(1/3) ))   (x→1 ⇒t→0) ⇒g(t)∼((1−t^2 )/((^3 (√2))(1−(1/6)t^3 ))) ⇒  lim_(t→0)    g(t) =(1/((^3 (√2)))) =lim_(x→1)   f(x)
letf(x)=(x1)+31x(31x2)changement31x=tgive1x=t3f(x)=g(t)=t3+tt(31+1t3)=1t2(2t3)13=1t2(32)(1t32)13(x1t0)g(t)1t2(32)(116t3)limt0g(t)=1(32)=limx1f(x)
Answered by john santu last updated on 28/Apr/20
lim_(x→1)  ((((x−1))^(1/(3  ))  ((((x−1)^2 ))^(1/(3  )) −1))/( ((1−x))^(1/(3  ))   ((1+x))^(1/(3  )) )) =   lim_(x→1)  ((1−(((x−1)^2 ))^(1/(3  )) )/( ((1+x))^(1/(3  )) )) = (1/( (2)^(1/(3  )) ))
limx1x13((x1)231)1x31+x3=limx11(x1)231+x3=123

Leave a Reply

Your email address will not be published. Required fields are marked *