Menu Close

lim-x-1-x-1-3-1-x-1-4-1-Evaluate-this-




Question Number 25026 by NECx last updated on 02/Dec/17
lim_(x→1) (((x^(1/3) −1)/(x^(1/4) −1)))  Evaluate this
$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\frac{{x}^{\mathrm{1}/\mathrm{3}} −\mathrm{1}}{{x}^{\mathrm{1}/\mathrm{4}} −\mathrm{1}}\right) \\ $$$${Evaluate}\:{this} \\ $$$$ \\ $$
Answered by nnnavendu last updated on 02/Dec/17
lim_(x→1) (((x^(1/3) −1)/(x^(1/4) −1)))  lim_(x→1) ((((x^(1/4) )^(4/3) −1^(4/3) )/(x^(1/4) −1)))  lim_(x→1) (4/3 1^((4/3)−1) )  4/3    farmula−  lim_(x→n) (((x^n −a^n )/(x−a)))=na^(n−1)
$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\frac{{x}^{\mathrm{1}/\mathrm{3}} −\mathrm{1}}{{x}^{\mathrm{1}/\mathrm{4}} −\mathrm{1}}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\frac{\left({x}^{\mathrm{1}/\mathrm{4}} \right)^{\mathrm{4}/\mathrm{3}} −\mathrm{1}^{\mathrm{4}/\mathrm{3}} }{{x}^{\mathrm{1}/\mathrm{4}} −\mathrm{1}}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\mathrm{4}/\mathrm{3}\:\mathrm{1}^{\frac{\mathrm{4}}{\mathrm{3}}−\mathrm{1}} \right) \\ $$$$\mathrm{4}/\mathrm{3} \\ $$$$ \\ $$$${f}\mathrm{armula}− \\ $$$$\underset{{x}\rightarrow\mathrm{n}} {\mathrm{lim}}\left(\frac{{x}^{\mathrm{n}} −\mathrm{a}^{\mathrm{n}} }{{x}−\mathrm{a}}\right)={na}^{{n}−\mathrm{1}} \\ $$$$ \\ $$
Commented by moxhix last updated on 02/Dec/17
I think...  lim_(x→a) (((x^n −a^n )/(x−a)))=((d/dx)x^n )_(x=a) = na^(n−1)
$${I}\:{think}… \\ $$$$\underset{{x}\rightarrow{a}} {{lim}}\left(\frac{{x}^{{n}} −{a}^{{n}} }{{x}−{a}}\right)=\left(\frac{{d}}{{dx}}{x}^{{n}} \right)_{{x}={a}} =\:{na}^{{n}−\mathrm{1}} \\ $$
Answered by jota+ last updated on 03/Dec/17
=((lim_(x→1)  x^(−2/3) /3)/(lim_(x→1)  x^(−3/4) /4))=(4/3)  Use Hopital rule
$$=\frac{\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:{x}^{−\mathrm{2}/\mathrm{3}} /\mathrm{3}}{\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:{x}^{−\mathrm{3}/\mathrm{4}} /\mathrm{4}}=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${Use}\:{Hopital}\:{rule} \\ $$$$ \\ $$
Commented by NECx last updated on 02/Dec/17
thanks bosses.... I really appreciate this
$${thanks}\:{bosses}….\:{I}\:{really}\:{appreciate}\:{this} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *