Menu Close

lim-x-1-x-1-p-1-x-1-q-1-




Question Number 121410 by john santu last updated on 07/Nov/20
 lim_(x→1) (((x)^(1/p) −1)/( (x)^(1/q) −1)) ?
limx1xp1xq1?
Answered by TANMAY PANACEA last updated on 07/Nov/20
x=t^(pq)   lim_(t→1)  ((t^q −1)/(t^p −1))  lim_(t→1)  (((t^q −1)/(t−1))/((t^p −1)/(t−1)))=((q×(1)^(q−1) )/(p×(1)^(p−1) ))=(q/p)
x=tpqlimt1tq1tp1limt1tq1t1tp1t1=q×(1)q1p×(1)p1=qp
Answered by liberty last updated on 07/Nov/20
  lim_(x→1)  ((x^(1/p) −1)/(x^(1/q) −1)) = lim_(x→1)  (((1/p)x^((1/p)−1) )/((1/q)x^((1/q)−1) ))   lim_(x→1)  ((qx^((1−p)/p) )/(px^((1−q)/q) )) = (q/p).
limx1x1p1x1q1=limx11px1p11qx1q1limx1qx1pppx1qq=qp.

Leave a Reply

Your email address will not be published. Required fields are marked *