Menu Close

lim-x-1-x-1-sin-pi-x-2-0-5x-1-where-x-N-




Question Number 34439 by rahul 19 last updated on 06/May/18
lim_(x→∞)  (−1)^(x−1) sin (π(√(x^2 +0.5x+1))),  where x∈N.
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(−\mathrm{1}\right)^{{x}−\mathrm{1}} \mathrm{sin}\:\left(\pi\sqrt{{x}^{\mathrm{2}} +\mathrm{0}.\mathrm{5}{x}+\mathrm{1}}\right), \\ $$$${where}\:{x}\in\mathbb{N}. \\ $$
Answered by MJS last updated on 07/May/18
for great values of x:  (√(x^2 +ax+b))=x+(a/2)            x^2 +ax+b            (x+(a/2))^2 =x^2 +ax+(a/4)            lim_(x→∞) ((x^2 +ax+b)/(x^2 +ax+(a/4)))=1  sin π(√(x^2 +(1/2)x+1))=sin π(x+(1/4))= { ((−((√2)/2), x=2k+1, k∈N)),((((√2)/2), x=2k, k∈N)) :}  lim_(x→∞) (−1)^(x−1) sin π(√(x^2 +(1/2)x+1))=−((√2)/2)
$$\mathrm{for}\:\mathrm{great}\:\mathrm{values}\:\mathrm{of}\:{x}: \\ $$$$\sqrt{{x}^{\mathrm{2}} +{ax}+{b}}={x}+\frac{{a}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} +{ax}+{b} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left({x}+\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} +{ax}+\frac{{a}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} +{ax}+{b}}{{x}^{\mathrm{2}} +{ax}+\frac{{a}}{\mathrm{4}}}=\mathrm{1} \\ $$$$\mathrm{sin}\:\pi\sqrt{{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{x}+\mathrm{1}}=\mathrm{sin}\:\pi\left({x}+\frac{\mathrm{1}}{\mathrm{4}}\right)=\begin{cases}{−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}},\:{x}=\mathrm{2}{k}+\mathrm{1},\:{k}\in\mathbb{N}}\\{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}},\:{x}=\mathrm{2}{k},\:{k}\in\mathbb{N}}\end{cases} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(−\mathrm{1}\right)^{{x}−\mathrm{1}} \mathrm{sin}\:\pi\sqrt{{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{x}+\mathrm{1}}=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$
Commented by rahul 19 last updated on 07/May/18
The correct  answer is −(1/( (√2)))
$${The}\:{correct}\:\:{answer}\:{is}\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$
Commented by MJS last updated on 07/May/18
you′re right, I′ll correct my answer  −(1/( (√2)))=−((√2)/2)
$$\mathrm{you}'\mathrm{re}\:\mathrm{right},\:\mathrm{I}'\mathrm{ll}\:\mathrm{correct}\:\mathrm{my}\:\mathrm{answer} \\ $$$$−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$
Commented by rahul 19 last updated on 07/May/18
as you have neglect b , can't we neglect " ax " also as it is much smaller than x² I mean in this case (x+1/4) , why you have not neglected 1/4 ?

Leave a Reply

Your email address will not be published. Required fields are marked *