Menu Close

lim-x-1-x-2-1-1-x-2-4-1-x-2-9-




Question Number 159276 by amin96 last updated on 14/Nov/21
lim_(x→∞) ((1/(x^2 +1))+(1/(x^2 +4))+(1/(x^2 +9))+…)=?
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{4}}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{9}}+\ldots\right)=? \\ $$
Answered by Ar Brandon last updated on 14/Nov/21
=lim_(x→∞) Σ_(n=1) ^∞ (1/(x^2 +n^2 ))=0
$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{n}^{\mathrm{2}} }=\mathrm{0} \\ $$
Commented by amin96 last updated on 15/Nov/21
answer  (π/4)−(1/2)ln(2)
$${answer}\:\:\frac{\pi}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\right) \\ $$
Commented by Ar Brandon last updated on 15/Nov/21
Do you have any solution?
$$\mathrm{Do}\:\mathrm{you}\:\mathrm{have}\:\mathrm{any}\:\mathrm{solution}? \\ $$
Commented by mindispower last updated on 15/Nov/21
hint  ((Sh(πz))/(πz))=Π_(n≥1) (1+(z^2 /n^2 ))
$${hint} \\ $$$$\frac{{Sh}\left(\pi{z}\right)}{\pi{z}}=\underset{{n}\geqslant\mathrm{1}} {\prod}\left(\mathrm{1}+\frac{{z}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right) \\ $$
Commented by amin96 last updated on 15/Nov/21
solution???
$${solution}??? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *