Menu Close

lim-x-1-x-2-1-x-2-Mastermind-




Question Number 169315 by Mastermind last updated on 28/Apr/22
lim_(x→∞) (((1+(√(x+2)))/(1−(√(x+2)))))    Mastermind
$${lim}_{{x}\rightarrow\infty} \left(\frac{\mathrm{1}+\sqrt{{x}+\mathrm{2}}}{\mathrm{1}−\sqrt{{x}+\mathrm{2}}}\right) \\ $$$$ \\ $$$${Mastermind} \\ $$
Commented by infinityaction last updated on 28/Apr/22
       p =lim_(x→∞) (x/x)(((1/x +(√(1+2/x)))/(1/x−(√(1+2/x)))))           p = (((0+(√(1+0)))/(0−(√(1+0)))))  = −1
$$\:\:\:\:\:\:\:{p}\:=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\cancel{{x}}}{\cancel{{x}}}\left(\frac{\mathrm{1}/{x}\:+\sqrt{\mathrm{1}+\mathrm{2}/{x}}}{\mathrm{1}/{x}−\sqrt{\mathrm{1}+\mathrm{2}/{x}}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:{p}\:=\:\left(\frac{\mathrm{0}+\sqrt{\mathrm{1}+\mathrm{0}}}{\mathrm{0}−\sqrt{\mathrm{1}+\mathrm{0}}}\right) \\ $$$$=\:−\mathrm{1} \\ $$$$ \\ $$
Answered by alephzero last updated on 28/Apr/22
lim_(x→∞) ((1+(√(x+2)))/(1−(√(x+2)))) =  =lim_(x→∞) (1/(1−(√(x+2))))+lim_(x→∞) ((√(x+2))/(1−(√(x+2)))) =  = 0+lim_(x→∞) ((√(x+2))/(1−(√(x+2))))  (√(x+2)) ∼ (√(x+2))−1 as x→∞  ⇒ (√(x+2)) ∼ −(1−(√(x+2)))  ⇒ lim_(x→∞) ((√(x+2))/(1−(√(x+2)))) = −1  ⇒ lim_(x→∞) ((√(x+2))/(1−(√(x+2)))) = −1
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}+\sqrt{{x}+\mathrm{2}}}{\mathrm{1}−\sqrt{{x}+\mathrm{2}}}\:= \\ $$$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{1}−\sqrt{{x}+\mathrm{2}}}+\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\sqrt{{x}+\mathrm{2}}}{\mathrm{1}−\sqrt{{x}+\mathrm{2}}}\:= \\ $$$$=\:\mathrm{0}+\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\sqrt{{x}+\mathrm{2}}}{\mathrm{1}−\sqrt{{x}+\mathrm{2}}} \\ $$$$\sqrt{{x}+\mathrm{2}}\:\sim\:\sqrt{{x}+\mathrm{2}}−\mathrm{1}\:{as}\:{x}\rightarrow\infty \\ $$$$\Rightarrow\:\sqrt{{x}+\mathrm{2}}\:\sim\:−\left(\mathrm{1}−\sqrt{{x}+\mathrm{2}}\right) \\ $$$$\Rightarrow\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\sqrt{{x}+\mathrm{2}}}{\mathrm{1}−\sqrt{{x}+\mathrm{2}}}\:=\:−\mathrm{1} \\ $$$$\Rightarrow\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\sqrt{{x}+\mathrm{2}}}{\mathrm{1}−\sqrt{{x}+\mathrm{2}}}\:=\:−\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *