Menu Close

lim-x-1-x-2-x-1-x-1-




Question Number 121222 by benjo_mathlover last updated on 06/Nov/20
   lim_(x→−∞) (((√(1+x^2 ))−x+1)/(x+1)) ?
$$\:\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }−\mathrm{x}+\mathrm{1}}{\mathrm{x}+\mathrm{1}}\:? \\ $$
Answered by liberty last updated on 06/Nov/20
 lim_(x→−∞)  ((∣x∣(√(1+(1/x^2 )))−x(1−(1/x)))/(x(1+(1/x)))) =   lim_(x→−∞)  ((−x((√(1+(1/x^2 )))+(1−(1/x))))/(x(1+(1/x)))) = −2.
$$\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mid\mathrm{x}\mid\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }}−\mathrm{x}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}\right)}{\mathrm{x}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)}\:= \\ $$$$\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{−\mathrm{x}\left(\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }}+\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}\right)\right)}{\mathrm{x}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)}\:=\:−\mathrm{2}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *