Menu Close

lim-x-1-x-2-x-2-2x-2-2x-2-




Question Number 118327 by bramlexs22 last updated on 17/Oct/20
  lim_(x→1)  ((x−(√(2−x^2 )))/(2x−(√(2+2x^2 )))) ?
$$\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{x}−\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }}{\mathrm{2}{x}−\sqrt{\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} }}\:? \\ $$
Answered by TANMAY PANACEA last updated on 17/Oct/20
lim_(x→1)  ((x^2 −(2−x^2 ))/(4x^2 −(2+2x^2 )))×((2x+(√(2+2x^2 )))/(x+(√(2−x^2 ))))  lim_(x→1)  ((2x^2 −2)/(2x^2 −2))×((2x+(√(2+2x^2 )))/(x+(√(2−x^2 ))))  =((2+(√4))/(1+(√1)))=(4/2)=2
$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} −\left(\mathrm{2}−{x}^{\mathrm{2}} \right)}{\mathrm{4}{x}^{\mathrm{2}} −\left(\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} \right)}×\frac{\mathrm{2}{x}+\sqrt{\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} }}{{x}+\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}}×\frac{\mathrm{2}{x}+\sqrt{\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} }}{{x}+\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }} \\ $$$$=\frac{\mathrm{2}+\sqrt{\mathrm{4}}}{\mathrm{1}+\sqrt{\mathrm{1}}}=\frac{\mathrm{4}}{\mathrm{2}}=\mathrm{2} \\ $$
Answered by bramlexs22 last updated on 17/Oct/20
Answered by benjo_mathlover last updated on 17/Oct/20
via L′hopital rule    lim_(x→1)  ((1+(x/( (√(2−x^2 )))))/(2−(((2x)/( (√(2+2x^2 ))))))) = ((1+1)/(2−(2/( (√4))))) = 2
$${via}\:{L}'{hopital}\:{rule}\: \\ $$$$\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{1}+\frac{{x}}{\:\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }}}{\mathrm{2}−\left(\frac{\mathrm{2}{x}}{\:\sqrt{\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} }}\right)}\:=\:\frac{\mathrm{1}+\mathrm{1}}{\mathrm{2}−\frac{\mathrm{2}}{\:\sqrt{\mathrm{4}}}}\:=\:\mathrm{2} \\ $$
Answered by 1549442205PVT last updated on 17/Oct/20
 I= lim_(x→1)  ((x−(√(2−x^2 )))/(2x−(√(2+2x^2 )))) =This is form(0/0)   Using L′Hopital⇒ I=Lim_(x→1)   ((1+(x/( (√(2−x^2 )))))/(2−((2x)/( (√(2+2x^2 ))))))  =((1+1)/(2−1))=2
$$\:\mathrm{I}=\underset{\mathrm{x}\rightarrow\mathrm{1}} {\:\mathrm{lim}}\:\frac{{x}−\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }}{\mathrm{2}{x}−\sqrt{\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} }}\:=\mathrm{This}\:\mathrm{is}\:\mathrm{form}\frac{\mathrm{0}}{\mathrm{0}}\: \\ $$$$\mathrm{Using}\:\mathrm{L}'\mathrm{Hopital}\Rightarrow\:\mathrm{I}=\underset{\mathrm{x}\rightarrow\mathrm{1}} {\mathrm{Lim}}\:\:\frac{\mathrm{1}+\frac{\mathrm{x}}{\:\sqrt{\mathrm{2}−\mathrm{x}^{\mathrm{2}} }}}{\mathrm{2}−\frac{\mathrm{2x}}{\:\sqrt{\mathrm{2}+\mathrm{2x}^{\mathrm{2}} }}} \\ $$$$=\frac{\mathrm{1}+\mathrm{1}}{\mathrm{2}−\mathrm{1}}=\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *