Question Number 118247 by bemath last updated on 16/Oct/20
$$\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{4}}]{\mathrm{1}+{x}^{\mathrm{4}} }\:−\:\sqrt[{\mathrm{5}}]{\mathrm{1}+{x}^{\mathrm{5}} }\:=? \\ $$
Answered by bobhans last updated on 16/Oct/20
$${solve}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{4}}]{\mathrm{1}+{x}^{\mathrm{4}} }\:−\:\sqrt[{\mathrm{5}\:}]{\mathrm{1}+{x}^{\mathrm{5}} }\:. \\ $$$${solution}:\: \\ $$$${let}\:{x}\:=\:\frac{\mathrm{1}}{{z}}\:;\:{z}\rightarrow\mathrm{0} \\ $$$$\:\:\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt[{\mathrm{4}}]{\mathrm{1}+\frac{\mathrm{1}}{{z}^{\mathrm{4}} }}−\sqrt[{\mathrm{5}}]{\mathrm{1}+\frac{\mathrm{1}}{{z}^{\mathrm{5}} }\:}\:=\: \\ $$$$\:\:\:\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{4}}]{{z}^{\mathrm{4}} +\mathrm{1}}−\sqrt[{\mathrm{5}}]{{z}^{\mathrm{5}} +\mathrm{1}}}{{z}}\:=\: \\ $$$$\:\:\:\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\frac{{z}^{\mathrm{4}} }{\mathrm{4}}+\mathrm{1}\right)−\left(\frac{{z}^{\mathrm{5}} }{\mathrm{5}}+\mathrm{1}\right)}{{z}}\:=\:\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\frac{{z}^{\mathrm{4}} }{\mathrm{4}}\:−\frac{{z}^{\mathrm{5}} }{\mathrm{5}}}{{z}}\:\right)\:\: \\ $$$$\:\:\:\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{z}^{\mathrm{3}} }{\mathrm{4}}\:−\:\frac{{z}^{\mathrm{4}} }{\mathrm{5}}\:=\:\mathrm{0} \\ $$$$ \\ $$
Commented by bemath last updated on 16/Oct/20
$${gave}\:{kudos}\:{man}\: \\ $$
Answered by mathmax by abdo last updated on 16/Oct/20
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{1}+\mathrm{x}^{\mathrm{4}} \right)^{\frac{\mathrm{1}}{\mathrm{4}}} −\left(\mathrm{1}+\mathrm{x}^{\mathrm{5}} \right)^{\frac{\mathrm{1}}{\mathrm{5}}} \:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} }\right)^{\frac{\mathrm{1}}{\mathrm{4}}} −\mathrm{x}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{5}} }\right)^{\frac{\mathrm{1}}{\mathrm{5}}} \:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\sim\mathrm{x}\left\{\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4x}^{\mathrm{4}} }−\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5x}^{\mathrm{5}} }\right\} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\sim\frac{\mathrm{1}}{\mathrm{4x}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{5x}^{\mathrm{4}} }\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\infty} \mathrm{f}\left(\mathrm{x}\right)=\mathrm{0} \\ $$