Question Number 158334 by alcohol last updated on 02/Nov/21
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{x}}\underset{{r}=\mathrm{1}} {\overset{{x}} {\sum}}{cos}\left(\frac{{r}\pi}{\mathrm{2}{x}}\right) \\ $$$${x}\in\mathbb{N} \\ $$
Commented by aleks041103 last updated on 02/Nov/21
$${The}\:{upper}\:{bound}\:{of}\:{the}\:{summation} \\ $$$${can}\:{only}\:{be}\:{a}\:{natural}\:{number},\:{while} \\ $$$${x}\:{is}\:{not}…{Probably}\:{there}\:{is}\:{a}\:{mistake}! \\ $$
Commented by alcohol last updated on 02/Nov/21
$${x}\in\mathbb{N} \\ $$
Commented by puissant last updated on 03/Nov/21
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{x}}\underset{{r}=\mathrm{1}} {\overset{{x}} {\sum}}{cos}\left(\frac{{r}\pi}{\mathrm{2}{x}}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {cos}\left(\frac{\pi{a}}{\mathrm{2}}\right){da} \\ $$$$=\:\frac{\mathrm{2}}{\pi}\left\{{sin}\left(\frac{\pi{a}}{\mathrm{2}}\right)\right\}_{\mathrm{0}} ^{\mathrm{1}} \:=\:\frac{\mathrm{2}}{\pi} \\ $$
Answered by aleks041103 last updated on 02/Nov/21
$$\underset{{r}=\mathrm{1}} {\overset{{x}} {\sum}}{cos}\left(\frac{{r}\pi}{\mathrm{2}{x}}\right)={Re}\left(\underset{{r}=\mathrm{1}} {\overset{{x}} {\sum}}{e}^{\frac{{ir}\pi}{\mathrm{2}{x}}} \right)={Re}\left(\underset{{r}=\mathrm{1}} {\overset{{x}} {\sum}}\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} \right)^{{r}} \right)= \\ $$$$={Re}\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} \frac{\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} \right)^{{x}} −\mathrm{1}}{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}\right)= \\ $$$$={Re}\left(\frac{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} }{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}\right){Re}\left(\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} \right)^{{x}} −\mathrm{1}\right)−{Im}\left(\frac{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} }{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}\right){Im}\left(\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} \right)^{{x}} −\mathrm{1}\right) \\ $$$$\frac{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} }{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}\:=\mathrm{1}+\frac{\mathrm{1}}{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}=\mathrm{1}+\frac{{e}^{−\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}{\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}\right)\left({e}^{−\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}\right)}= \\ $$$$=\mathrm{1}+\frac{{e}^{−\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}{\mathrm{1}+\mathrm{1}−\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} +{e}^{−\frac{{i}\pi}{\mathrm{2}{x}}} \right)}=\mathrm{1}+\frac{{e}^{−\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}{\mathrm{2}\left(\mathrm{1}−{cos}\left(\frac{\pi}{\mathrm{2}{x}}\right)\right)}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−{ictg}\left(\frac{\pi}{\mathrm{4}{x}}\right)\right) \\ $$$$\Rightarrow{Re}\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} \frac{\left({e}^{\frac{{i}\pi}{\mathrm{2}{x}}} \right)^{{x}} −\mathrm{1}}{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}\right)={Re}\left(\frac{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} }{{e}^{\frac{{i}\pi}{\mathrm{2}{x}}} −\mathrm{1}}\left({i}−\mathrm{1}\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(−\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{2}}{ctg}\left(\frac{\pi}{\mathrm{4}{x}}\right)=−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+{ctg}\left(\frac{\pi}{\mathrm{4}{x}}\right)\right)… \\ $$