Menu Close

lim-x-1-x-sin-2x-2-




Question Number 109139 by bemath last updated on 21/Aug/20
 lim_(x→−∞)  (1−x) sin ∣2x−2∣ ?
$$\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\left(\mathrm{1}−{x}\right)\:\mathrm{sin}\:\mid\mathrm{2}{x}−\mathrm{2}\mid\:? \\ $$
Commented by kaivan.ahmadi last updated on 21/Aug/20
x→−∞⇒2x−2→−∞⇒∣2x−2∣→+∞⇒  −1≤sin∣2x−2∣≤1 is an element of R we  say a.  ⇒lim_(x→−∞) (1−x)sin∣2x−2∣=+∞×a=+∞  or −∞
$${x}\rightarrow−\infty\Rightarrow\mathrm{2}{x}−\mathrm{2}\rightarrow−\infty\Rightarrow\mid\mathrm{2}{x}−\mathrm{2}\mid\rightarrow+\infty\Rightarrow \\ $$$$−\mathrm{1}\leqslant{sin}\mid\mathrm{2}{x}−\mathrm{2}\mid\leqslant\mathrm{1}\:{is}\:{an}\:{element}\:{of}\:{R}\:{we} \\ $$$${say}\:{a}. \\ $$$$\Rightarrow{lim}_{{x}\rightarrow−\infty} \left(\mathrm{1}−{x}\right){sin}\mid\mathrm{2}{x}−\mathrm{2}\mid=+\infty×{a}=+\infty \\ $$$${or}\:−\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *