Menu Close

lim-x-1-x-x-x-ln-x-x-1-




Question Number 128604 by john_santu last updated on 08/Jan/21
 lim_(x→1)  ((x^x −x)/(ln x−x+1)) ?
$$\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{x}} −\mathrm{x}}{\mathrm{ln}\:\mathrm{x}−\mathrm{x}+\mathrm{1}}\:? \\ $$
Answered by liberty last updated on 09/Jan/21
 (d/dx)(x^x )=x^x (ln x+1)  lim_(x→1) ((x^x (ln x+1)−1)/(x^(−1) −1))=lim_(x→1) ((x^x .ln x+x^x −1)/(x^(−1) −1))  = lim_(x→1) ((x^x (ln x+1)^2 +x^(x−1) )/(−x^(−2) ))  = ((1+1)/(−1))=−2
$$\:\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{x}} \right)=\mathrm{x}^{\mathrm{x}} \left(\mathrm{ln}\:\mathrm{x}+\mathrm{1}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{x}} \left(\mathrm{ln}\:\mathrm{x}+\mathrm{1}\right)−\mathrm{1}}{\mathrm{x}^{−\mathrm{1}} −\mathrm{1}}=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{x}} .\mathrm{ln}\:\mathrm{x}+\mathrm{x}^{\mathrm{x}} −\mathrm{1}}{\mathrm{x}^{−\mathrm{1}} −\mathrm{1}} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{x}} \left(\mathrm{ln}\:\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{x}^{\mathrm{x}−\mathrm{1}} }{−\mathrm{x}^{−\mathrm{2}} } \\ $$$$=\:\frac{\mathrm{1}+\mathrm{1}}{−\mathrm{1}}=−\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *