Menu Close

Lim-x-16x-2-2x-1-4x-5-




Question Number 188984 by normans last updated on 10/Mar/23
    Lim_(x→∼)  (√(16x^2 −2x−1))−4x−5 = ??
Limx→∼16x22x14x5=??
Commented by MJS_new last updated on 13/Mar/23
a>0 ⇒ lim_(x→∞)  (√(ax^2 +bx+c))−((√a)x+d) =(b/(2(√a)))−d
a>0limxax2+bx+c(ax+d)=b2ad
Commented by cortano12 last updated on 13/Mar/23
it should be L=(b/(2(√a))) −d
itshouldbeL=b2ad
Commented by cortano12 last updated on 13/Mar/23
=((−2)/(2(√(16))))−5=−(1/4)−5=−((21)/4)
=22165=145=214
Commented by MJS_new last updated on 13/Mar/23
yes, thank you
yes,thankyou
Answered by cortano12 last updated on 10/Mar/23
 lim_(x→∞)  (√(16x^2 −2x−1))−4x−5  = lim_(x→∞)  4x [ (√(1−(1/(8x))−(1/(16x^2 ))))−1−(5/(4x)) ]   [ (1/(4x)) = h ; h→0 ]  = lim_(h→0)  (1/h) [ (√(1−(1/2)h−h^2 ))−1−5h ]  = −5 + lim_(h→0)  (((√(1−(1/2)h−h^2 ))−1)/h)  = −5+(1/2) lim_(h→0)  ((h(−(1/2)−h))/h)  =−((21)/4)
limx16x22x14x5=limx4x[118x116x2154x][14x=h;h0]=limh01h[112hh215h]=5+limh0112hh21h=5+12limh0h(12h)h=214

Leave a Reply

Your email address will not be published. Required fields are marked *