Menu Close

lim-x-16x-2-4x-x-2-9x-2-3x-




Question Number 21179 by Joel577 last updated on 15/Sep/17
lim_(x→∞)  (√(16x^2  + 4x)) − (√x^2 ) − (√(9x^2  + 3x))
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\mathrm{16}{x}^{\mathrm{2}} \:+\:\mathrm{4}{x}}\:−\:\sqrt{{x}^{\mathrm{2}} }\:−\:\sqrt{\mathrm{9}{x}^{\mathrm{2}} \:+\:\mathrm{3}{x}} \\ $$
Answered by dioph last updated on 15/Sep/17
lim_(x→∞)  x(√(16+(4/x))) − x − x(√(9+(3/x)))  lim_(x→∞)  x((√(16+(4/x)))−1−(√(9+(3/x))))  lim_(x→∞)  (((√(16+4x^(−1) ))−1−(√(9+3x^(−1) )))/x^(−1) )  applying lhopital  lim_(x→∞)  (((16+4x^(−1) )^(−1/2) ×(−4x^(−2) )−(9+3x^(−1) )^(−1/2) ×(−3x^(−2) ))/(−x^(−2) ))  lim_(x→∞)  (4/( (√(16+4x^(−1) ))))−(3/( (√(9+3x^(−1) ))))  = 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}\sqrt{\mathrm{16}+\frac{\mathrm{4}}{{x}}}\:−\:{x}\:−\:{x}\sqrt{\mathrm{9}+\frac{\mathrm{3}}{{x}}} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}\left(\sqrt{\mathrm{16}+\frac{\mathrm{4}}{{x}}}−\mathrm{1}−\sqrt{\mathrm{9}+\frac{\mathrm{3}}{{x}}}\right) \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{16}+\mathrm{4}{x}^{−\mathrm{1}} }−\mathrm{1}−\sqrt{\mathrm{9}+\mathrm{3}{x}^{−\mathrm{1}} }}{{x}^{−\mathrm{1}} } \\ $$$$\mathrm{applying}\:\mathrm{lhopital} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left(\mathrm{16}+\mathrm{4}{x}^{−\mathrm{1}} \right)^{−\mathrm{1}/\mathrm{2}} ×\left(−\mathrm{4}{x}^{−\mathrm{2}} \right)−\left(\mathrm{9}+\mathrm{3}{x}^{−\mathrm{1}} \right)^{−\mathrm{1}/\mathrm{2}} ×\left(−\mathrm{3}{x}^{−\mathrm{2}} \right)}{−{x}^{−\mathrm{2}} } \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{4}}{\:\sqrt{\mathrm{16}+\mathrm{4}{x}^{−\mathrm{1}} }}−\frac{\mathrm{3}}{\:\sqrt{\mathrm{9}+\mathrm{3}{x}^{−\mathrm{1}} }} \\ $$$$=\:\mathrm{0} \\ $$
Commented by Joel577 last updated on 19/Sep/17
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *