Menu Close

lim-x-2-3-x-9-x-2-




Question Number 149871 by ArielVyny last updated on 07/Aug/21
lim_(x→2) ((3^(x!) −9)/(x−2))
$${lim}_{{x}\rightarrow\mathrm{2}} \frac{\mathrm{3}^{{x}!} −\mathrm{9}}{{x}−\mathrm{2}} \\ $$
Answered by Ar Brandon last updated on 08/Aug/21
L=lim_(x→2) ((3^(x!) −9)/(x−2))       =lim_(x→2) ((Γ(x+1)ψ(x+1)3^(x!) ln3)/1)       =Γ(3)ψ(3)3^(2!) ln3=2((1/2)+1−γ)9ln3       =9(3−2γ)ln3
$$\mathscr{L}=\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\mathrm{3}^{{x}!} −\mathrm{9}}{{x}−\mathrm{2}} \\ $$$$\:\:\:\:\:=\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\Gamma\left({x}+\mathrm{1}\right)\psi\left({x}+\mathrm{1}\right)\mathrm{3}^{{x}!} \mathrm{ln3}}{\mathrm{1}} \\ $$$$\:\:\:\:\:=\Gamma\left(\mathrm{3}\right)\psi\left(\mathrm{3}\right)\mathrm{3}^{\mathrm{2}!} \mathrm{ln3}=\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}−\gamma\right)\mathrm{9ln3} \\ $$$$\:\:\:\:\:=\mathrm{9}\left(\mathrm{3}−\mathrm{2}\gamma\right)\mathrm{ln3} \\ $$
Commented by ArielVyny last updated on 08/Aug/21
thank sir
$${thank}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *