Menu Close

lim-x-2-3x-x-2-x-2-2x-2-




Question Number 78791 by jagoll last updated on 20/Jan/20
    lim_(x→∞)  (√(2+3x−x^2 )) −(√(x^2 −2x+2)) ?
$$ \\ $$$$ \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\mathrm{2}+\mathrm{3x}−\mathrm{x}^{\mathrm{2}} }\:−\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{2}}\:? \\ $$
Answered by john santu last updated on 20/Jan/20
lim_(x→∞)  (√(x^2 ((2/x^2 )+(3/x)−1))) −(√(x^2 (1−(2/x)+(2/x^2 )))) =  lim_(x→∞)  ∣x∣(√((2/x^2 )+(3/x)−1))−∣x∣(√(1−(2/x)+(2/x^2 ))) =  lim_(x→∞)  ∣x∣(i)−∣x∣(1)= ∞
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{{x}^{\mathrm{2}} \left(\frac{\mathrm{2}}{{x}^{\mathrm{2}} }+\frac{\mathrm{3}}{{x}}−\mathrm{1}\right)}\:−\sqrt{{x}^{\mathrm{2}} \left(\mathrm{1}−\frac{\mathrm{2}}{{x}}+\frac{\mathrm{2}}{{x}^{\mathrm{2}} }\right)}\:= \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mid{x}\mid\sqrt{\frac{\mathrm{2}}{{x}^{\mathrm{2}} }+\frac{\mathrm{3}}{{x}}−\mathrm{1}}−\mid{x}\mid\sqrt{\mathrm{1}−\frac{\mathrm{2}}{{x}}+\frac{\mathrm{2}}{{x}^{\mathrm{2}} }}\:= \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mid{x}\mid\left({i}\right)−\mid{x}\mid\left(\mathrm{1}\right)=\:\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *