Menu Close

lim-x-2-5-x-25-x-2-with-out-H-L-roule-




Question Number 185508 by mathlove last updated on 23/Jan/23
lim_(x→2) ((5^x −25)/(x−2))=?  with out H′L roule
$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\mathrm{5}^{{x}} −\mathrm{25}}{{x}−\mathrm{2}}=? \\ $$$${with}\:{out}\:{H}'{L}\:{roule} \\ $$
Answered by Ar Brandon last updated on 23/Jan/23
lim_(x→2) ((5^x −25)/(x−2))=lim_(t→0) ((5^(t+2) −25)/t)=lim_(t→0) ((25(5^t −1))/t)  =25lim_(t→0) ((e^(tln5) −1)/t)=25lim_(t→0) (((1+tln5)−1)/t)  =25lim_(t→0) ((tln5)/t)=25lim_(t→0) (ln5)=25ln(5)
$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\mathrm{5}^{{x}} −\mathrm{25}}{{x}−\mathrm{2}}=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{5}^{{t}+\mathrm{2}} −\mathrm{25}}{{t}}=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{25}\left(\mathrm{5}^{{t}} −\mathrm{1}\right)}{{t}} \\ $$$$=\mathrm{25}\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{t}\mathrm{ln5}} −\mathrm{1}}{{t}}=\mathrm{25}\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{1}+{t}\mathrm{ln5}\right)−\mathrm{1}}{{t}} \\ $$$$=\mathrm{25}\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{t}\mathrm{ln5}}{{t}}=\mathrm{25}\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{ln5}\right)=\mathrm{25ln}\left(\mathrm{5}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *