Menu Close

lim-x-2-log-1-x-1-2x-1-4x-




Question Number 167663 by mathlove last updated on 22/Mar/22
lim_(x→2) [log((1/x)+(1/(2x))+(1/(4x)).......)]=?
limx2[log(1x+12x+14x.)]=?
Commented by mathlove last updated on 22/Mar/22
????
????
Commented by alephzero last updated on 22/Mar/22
did You mean   (1/x)+(1/(2x))+(1/(4x))+...=(1/x)+(1/(2x))+...+(1/(2nx))+...  or  (1/x)+(1/(2x))+(1/(4x))+...=(1/x)+(1/(2x))+...+(1/(2^n x))+...?
didYoumean1x+12x+14x+=1x+12x++12nx+or1x+12x+14x+=1x+12x++12nx+?
Answered by alephzero last updated on 22/Mar/22
(1/(2^0 x))+(1/(2^1 x))+(1/(2^2 x))+...=Σ_(n=0) ^∞ (1/(2^n x))  S_n  = ((a_1 (1−r^n ))/(1−r))  a_1  = (1/x) ∧ r = (1/2)  ⇒ S = S_∞  = ((((1/x)))/(((1/2)))) = (2/x)  ⇒ lim_(x→2) ln((1/x)+(1/(2x))+...) =  = lim_(x→2) ln((2/x)) = 0
120x+121x+122x+=n=012nxSn=a1(1rn)1ra1=1xr=12S=S=(1x)(12)=2xlimlnx2(1x+12x+)==limlnx2(2x)=0
Commented by mathlove last updated on 22/Mar/22
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *