Menu Close

lim-x-2-x-2-1-3-x-2-




Question Number 116756 by bemath last updated on 06/Oct/20
 lim_(x→2)  (((x−2))^(1/(3 )) /(x−2)) =?
$$\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}\:}]{\mathrm{x}−\mathrm{2}}}{\mathrm{x}−\mathrm{2}}\:=? \\ $$
Answered by bobhans last updated on 06/Oct/20
lim_(x→2)  (((x−2))^(1/(3 )) /(x−2))= lim_(x→2)  (1/( (((x−2)^2 ))^(1/3) )) = ∞
$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}\:}]{\mathrm{x}−\mathrm{2}}}{\mathrm{x}−\mathrm{2}}=\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} }}\:=\:\infty \\ $$
Answered by Bird last updated on 07/Oct/20
=lim_(x→2) (^3 (√((x−2)/((x−2)^3 ))))  =lim_(x→2) (^3 (√(1/((x−2)^2 ))))=+∞
$$={lim}_{{x}\rightarrow\mathrm{2}} \left(^{\mathrm{3}} \sqrt{\frac{{x}−\mathrm{2}}{\left({x}−\mathrm{2}\right)^{\mathrm{3}} }}\right) \\ $$$$={lim}_{{x}\rightarrow\mathrm{2}} \left(^{\mathrm{3}} \sqrt{\frac{\mathrm{1}}{\left({x}−\mathrm{2}\right)^{\mathrm{2}} }}\right)=+\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *