Menu Close

lim-x-2-x-2-e-x-4e-2-x-2-




Question Number 154390 by liberty last updated on 18/Sep/21
 lim_(x→2) ((x^2 e^x −4e^2 )/(x−2)) ?
$$\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} {e}^{{x}} −\mathrm{4}{e}^{\mathrm{2}} }{{x}−\mathrm{2}}\:? \\ $$
Commented by puissant last updated on 18/Sep/21
=lim_(x→2) (2xe^x +x^2 e^x )= 4e^2 +4e^2 =8e^2 ..
$$=\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\left(\mathrm{2}{xe}^{{x}} +{x}^{\mathrm{2}} {e}^{{x}} \right)=\:\mathrm{4}{e}^{\mathrm{2}} +\mathrm{4}{e}^{\mathrm{2}} =\mathrm{8}{e}^{\mathrm{2}} .. \\ $$
Answered by yeti123 last updated on 18/Sep/21
lim_(x→2) ((x^2 e^x  −4e^2 )/(x − 2)) = lim_(x→2) ((2xe^x  + x^2 e^x )/1)                                 = lim_(x→2) e^x (2x + x^2 )                                 = 8e^2
$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} {e}^{{x}} \:−\mathrm{4}{e}^{\mathrm{2}} }{{x}\:−\:\mathrm{2}}\:=\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\mathrm{2}{xe}^{{x}} \:+\:{x}^{\mathrm{2}} {e}^{{x}} }{\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}{e}^{{x}} \left(\mathrm{2}{x}\:+\:{x}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{8}{e}^{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *