Menu Close

lim-x-2-x-2-x-2-




Question Number 184883 by mathlove last updated on 13/Jan/23
lim_(x→2) ((√(x−2))/(x−2))=?
$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\sqrt{{x}−\mathrm{2}}}{{x}−\mathrm{2}}=? \\ $$
Answered by aba last updated on 13/Jan/23
lim_(x→2) ((√(x−2))/(x−2))=lim_(x→2^+ ) (1/( (√(x−2))))=(1/0^+ )=+∞
$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\sqrt{\mathrm{x}−\mathrm{2}}}{\mathrm{x}−\mathrm{2}}=\underset{{x}\rightarrow\mathrm{2}^{+} } {\mathrm{lim}}\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}−\mathrm{2}}}=\frac{\mathrm{1}}{\mathrm{0}^{+} }=+\infty \\ $$
Commented by Frix last updated on 13/Jan/23
lim_(x→2)  f(x) is not the same as lim_(x→2^+ )  f(x) if  lim_(x→2^− )  f(x) doesn′t exist.  lim_(x→2)  f(x) doesn′t exist if lim_(x→2^− )  f(x) ≠lim_(x→2^+ )  f(x)
$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{not}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\underset{{x}\rightarrow\mathrm{2}^{+} } {\mathrm{lim}}\:{f}\left({x}\right)\:\mathrm{if} \\ $$$$\underset{{x}\rightarrow\mathrm{2}^{−} } {\mathrm{lim}}\:{f}\left({x}\right)\:\mathrm{doesn}'\mathrm{t}\:\mathrm{exist}. \\ $$$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:{f}\left({x}\right)\:\mathrm{doesn}'\mathrm{t}\:\mathrm{exist}\:\mathrm{if}\:\underset{{x}\rightarrow\mathrm{2}^{−} } {\mathrm{lim}}\:{f}\left({x}\right)\:\neq\underset{{x}\rightarrow\mathrm{2}^{+} } {\mathrm{lim}}\:{f}\left({x}\right) \\ $$
Commented by aba last updated on 13/Jan/23
the function is undefined on the left side
$$\mathrm{the}\:\mathrm{function}\:\mathrm{is}\:\mathrm{undefined}\:\mathrm{on}\:\mathrm{the}\:\mathrm{left}\:\mathrm{side} \\ $$
Commented by Frix last updated on 13/Jan/23
Yes. This means, the limit doesn′t exist.
$$\mathrm{Yes}.\:\mathrm{This}\:\mathrm{means},\:\mathrm{the}\:\mathrm{limit}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{exist}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *