Menu Close

lim-x-2-x-2-x-2-x-2-4-is-




Question Number 34007 by rahul 19 last updated on 29/Apr/18
lim_(x→2) (((√(x−2)) +(√x) −(√2))/( (√(x^2 −4))))  is ?
$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\sqrt{{x}−\mathrm{2}}\:+\sqrt{{x}}\:−\sqrt{\mathrm{2}}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}}\:\:{is}\:? \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Apr/18
=lim_(x→2) (((√(x−2 )) +(x−2)/((√x) +(√2)))/( (√((x+2)(x−2))) ))  take common factor (√(x−2)) from N_r and Dr  =lim_(x→2)  ((1+((√(x−2) )) /((√x) +(√(2))))/( (√((x+2))) ))  =ans is 1/2
$$={li}\underset{{x}\rightarrow\mathrm{2}} {{m}}\frac{\sqrt{{x}−\mathrm{2}\:}\:+\left({x}−\mathrm{2}\right)/\left(\sqrt{{x}}\:+\sqrt{\mathrm{2}}\right)}{\:\sqrt{\left({x}+\mathrm{2}\right)\left({x}−\mathrm{2}\right)}\:} \\ $$$${take}\:{common}\:{factor}\:\sqrt{{x}−\mathrm{2}}\:{from}\:{N}_{{r}} {and}\:{Dr} \\ $$$$={li}\underset{{x}\rightarrow\mathrm{2}} {{m}}\:\frac{\mathrm{1}+\left(\sqrt{\left.{x}−\mathrm{2}\right)\:}\:/\left(\sqrt{{x}}\:+\sqrt{\left.\mathrm{2}\right)}\right.\right.}{\:\sqrt{\left({x}+\mathrm{2}\right)}\:} \\ $$$$={ans}\:{is}\:\mathrm{1}/\mathrm{2} \\ $$
Commented by rahul 19 last updated on 29/Apr/18
Thank you sir.
$$\mathscr{T}{hank}\:{you}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *