Menu Close

lim-x-2021x-2-6x-1021x-3-5x-1-3-




Question Number 159837 by tounghoungko last updated on 21/Nov/21
  lim_(x→−∞)  (√(2021x^2 −6x)) +((1021x^3 −5x))^(1/3)  =?
$$\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\sqrt{\mathrm{2021}{x}^{\mathrm{2}} −\mathrm{6}{x}}\:+\sqrt[{\mathrm{3}}]{\mathrm{1021}{x}^{\mathrm{3}} −\mathrm{5}{x}}\:=? \\ $$
Answered by kaivan.ahmadi last updated on 24/Nov/21
∼lim(√(2021))∣x−((−6)/(2×2021))∣+((1021))^(1/3) ∣x∣=  lim(√(2021))(−x−(3/(2021)))−((1021))^(1/3) x=+∞
$$\sim{lim}\sqrt{\mathrm{2021}}\mid{x}−\frac{−\mathrm{6}}{\mathrm{2}×\mathrm{2021}}\mid+\sqrt[{\mathrm{3}}]{\mathrm{1021}}\mid{x}\mid= \\ $$$${lim}\sqrt{\mathrm{2021}}\left(−{x}−\frac{\mathrm{3}}{\mathrm{2021}}\right)−\sqrt[{\mathrm{3}}]{\mathrm{1021}}{x}=+\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *