Menu Close

lim-x-27x-3-3x-2-1-3-8x-3-x-2-1-3-x-3-4x-2-2021-1-3-




Question Number 148600 by EDWIN88 last updated on 29/Jul/21
    lim_(x→−∞) ((27x^3 −3x^2 ))^(1/3)  +((8x^3 −x^2 ))^(1/3) −((x^3 −4x^2 +2021))^(1/3)  =?
$$\:\:\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\sqrt[{\mathrm{3}}]{\mathrm{27}{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} }\:+\sqrt[{\mathrm{3}}]{\mathrm{8}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} }−\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2021}}\:=?\: \\ $$
Answered by bemath last updated on 29/Jul/21
 lim_(x→−∞) −((27))^(1/3)  (x−(3/(3×27)))−(8)^(1/3) (x−(1/(3×8)))+(1)^(1/3)  (x−(4/(3×1)))  =lim_(x→−∞) (−3x+(1/9))−(2x−(1/(12)))+(x−(4/3))=+∞
$$\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}−\sqrt[{\mathrm{3}}]{\mathrm{27}}\:\left(\mathrm{x}−\frac{\mathrm{3}}{\mathrm{3}×\mathrm{27}}\right)−\sqrt[{\mathrm{3}}]{\mathrm{8}}\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{3}×\mathrm{8}}\right)+\sqrt[{\mathrm{3}}]{\mathrm{1}}\:\left(\mathrm{x}−\frac{\mathrm{4}}{\mathrm{3}×\mathrm{1}}\right) \\ $$$$=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\left(−\mathrm{3x}+\frac{\mathrm{1}}{\mathrm{9}}\right)−\left(\mathrm{2x}−\frac{\mathrm{1}}{\mathrm{12}}\right)+\left(\mathrm{x}−\frac{\mathrm{4}}{\mathrm{3}}\right)=+\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *