Menu Close

lim-x-2x-5-2x-1-x-3-




Question Number 15195 by Joel577 last updated on 08/Jun/17
lim_(x→∞)  (((2x − 5)/(2x + 1)))^(x + 3)
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{2}{x}\:−\:\mathrm{5}}{\mathrm{2}{x}\:+\:\mathrm{1}}\right)^{{x}\:+\:\mathrm{3}} \\ $$
Commented by Joel577 last updated on 08/Jun/17
= lim_(x→∞)  (1 − (6/(2x + 1)))^(x + 3)   = lim_(x→∞)  {[(1 − (6/(2x + 1)))^(− ((2x + 1)/6)) ]^(− (6/(2x + 1))) }^(x + 3)   = [ lim_(x→∞)  (1 − (6/(2x + 1)))^(− ((2x + 1)/6)) ]^(lim_(x→∞)  (−((6(x + 3))/(2x + 1))))   = e^(−3)     Is it correct?
$$=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{1}\:−\:\frac{\mathrm{6}}{\mathrm{2}{x}\:+\:\mathrm{1}}\right)^{{x}\:+\:\mathrm{3}} \\ $$$$=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left\{\left[\left(\mathrm{1}\:−\:\frac{\mathrm{6}}{\mathrm{2}{x}\:+\:\mathrm{1}}\right)^{−\:\frac{\mathrm{2}{x}\:+\:\mathrm{1}}{\mathrm{6}}} \right]^{−\:\frac{\mathrm{6}}{\mathrm{2}{x}\:+\:\mathrm{1}}} \right\}^{{x}\:+\:\mathrm{3}} \\ $$$$=\:\left[\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{1}\:−\:\frac{\mathrm{6}}{\mathrm{2}{x}\:+\:\mathrm{1}}\right)^{−\:\frac{\mathrm{2}{x}\:+\:\mathrm{1}}{\mathrm{6}}} \right]^{\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(−\frac{\mathrm{6}\left({x}\:+\:\mathrm{3}\right)}{\mathrm{2}{x}\:+\:\mathrm{1}}\right)} \\ $$$$=\:{e}^{−\mathrm{3}} \\ $$$$ \\ $$$$\mathrm{Is}\:\mathrm{it}\:\mathrm{correct}? \\ $$
Commented by Joel577 last updated on 08/Jun/17
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$
Commented by mrW1 last updated on 08/Jun/17
correct!
$$\mathrm{correct}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *