Menu Close

lim-x-3-3-x-x-3-x-x-3-3-find-the-limit-above-




Question Number 180414 by Mastermind last updated on 12/Nov/22
lim_(x→3) (((3^x −x^3 )/(x^x −3^3 )))    find the limit above
$$\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{3}} {\mathrm{m}}\left(\frac{\mathrm{3}^{\mathrm{x}} −\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{x}} −\mathrm{3}^{\mathrm{3}} }\right) \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{above} \\ $$
Answered by Frix last updated on 12/Nov/22
again l′Ho^� pital  =lim_(x→3)  ((3^x ln 3 −3x^2 )/(x^x (1+ln x))) =((ln 3 −1)/(ln 3 +1))
$$\mathrm{again}\:\mathrm{l}'\mathrm{H}\hat {\mathrm{o}pital} \\ $$$$=\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\frac{\mathrm{3}^{{x}} \mathrm{ln}\:\mathrm{3}\:−\mathrm{3}{x}^{\mathrm{2}} }{{x}^{{x}} \left(\mathrm{1}+\mathrm{ln}\:{x}\right)}\:=\frac{\mathrm{ln}\:\mathrm{3}\:−\mathrm{1}}{\mathrm{ln}\:\mathrm{3}\:+\mathrm{1}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *