Menu Close

lim-x-3-pi-arc-tan-x-2x-




Question Number 83919 by john santu last updated on 08/Mar/20
lim_(x→+∞)  ((3/π)arc tan x)^(2x)  = ?
limx+(3πarctanx)2x=?
Commented by john santu last updated on 08/Mar/20
= e^(lim_(x→+∞)  (ln((3/π)tan^(−1) (x))^(2x) ))   = e^(lim_(x→+∞)  (((ln((3/π)tan^(−1) (x)))/(1/(2x)))))   = e^(lim_(x→+∞)  (π/(3tan^(−1) (x))). (3/(π(1+x^2 ))).(−2x^2 ))   =e^(lim_(x→+∞)  (π/(3((π/2))))×lim_(x→+∞)  ((−6x^2 )/(π+πx^2 )))   = e^((2/3)×(−(6/π)))  = e^(−(4/π))   = (1/( (e^4 )^(1/(π  )) ))
=elimx+(ln(3πtan1(x))2x)=elimx+(ln(3πtan1(x))12x)=elimx+π3tan1(x).3π(1+x2).(2x2)=elimx+π3(π2)×limx+6x2π+πx2=e23×(6π)=e4π=1e4π

Leave a Reply

Your email address will not be published. Required fields are marked *