Menu Close

lim-x-3-x-9-6-x-x-3-




Question Number 120843 by bramlexs22 last updated on 03/Nov/20
 lim_(x→3)  ((√(x+9−6(√x)))/( (√x)−3)) ?
$$\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}+\mathrm{9}−\mathrm{6}\sqrt{\mathrm{x}}}}{\:\sqrt{\mathrm{x}}−\mathrm{3}}\:? \\ $$
Commented by Dwaipayan Shikari last updated on 03/Nov/20
((√(12−6(√3)))/( (√3)−3))=−1
$$\frac{\sqrt{\mathrm{12}−\mathrm{6}\sqrt{\mathrm{3}}}}{\:\sqrt{\mathrm{3}}−\mathrm{3}}=−\mathrm{1} \\ $$
Answered by Jamshidbek2311 last updated on 03/Nov/20
((√(3+9−6(√3)))/( (√3)−3))=((√(3(4−2(√3))))/( (√3)−3))=((√(3((√3)−1)^2 ))/( (√3)−3))=  ((((√3)−1)(√3))/( (√3)−3))=((3−(√3))/( (√3)−3))=−1
$$\frac{\sqrt{\mathrm{3}+\mathrm{9}−\mathrm{6}\sqrt{\mathrm{3}}}}{\:\sqrt{\mathrm{3}}−\mathrm{3}}=\frac{\sqrt{\mathrm{3}\left(\mathrm{4}−\mathrm{2}\sqrt{\mathrm{3}}\right)}}{\:\sqrt{\mathrm{3}}−\mathrm{3}}=\frac{\sqrt{\mathrm{3}\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)^{\mathrm{2}} }}{\:\sqrt{\mathrm{3}}−\mathrm{3}}= \\ $$$$\frac{\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{3}}−\mathrm{3}}=\frac{\mathrm{3}−\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{3}}−\mathrm{3}}=−\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *