Menu Close

lim-x-3x-2-x-2-x-3-2-




Question Number 83323 by john santu last updated on 01/Mar/20
lim_(x→∞)  (√((3x−2)(x−(√2)))) − x(√3)−(√2) =?
limx(3x2)(x2)x32=?
Commented by abdomathmax last updated on 01/Mar/20
let f(x)=(√((3x−2)(x−(√2))))−x(√3)−(√2)  ⇒f(x)=(√(3x^2 −3(√2)x−2x+2(√2)))−x(√3)−(√2)  =(√(3x^2 −(3(√2)+2)x+2(√2)))−x(√3)−(√2)  at +∞  f(x) =x(√3)(√(1−((3(√2)+2)/(3x))+((2(√2))/(3x^2 ))))−x(√3)−(√2)  ∼x(√3){1+(1/2)(−((3(√2)+2)/(3x))+((2(√2))/(3x^3 )))}−x(√3)−(√2) ⇒  f(x)∼((x(√3))/2)(−((3(√2)+2)/(3x))+((2(√2))/(3x^3 )))−(√2)  ⇒f(x)∼−((√3)/2)(((3(√2)+2)/3))+((√6)/(3x^2 ))−(√2) ⇒  lim_(x→+∞)    f(x)=−((√3)/6)(3(√2)+2)−(√2)  at −∞ lim_(x→−∞)  f(x)=+∞
letf(x)=(3x2)(x2)x32f(x)=3x232x2x+22x32=3x2(32+2)x+22x32at+f(x)=x3132+23x+223x2x32x3{1+12(32+23x+223x3)}x32f(x)x32(32+23x+223x3)2f(x)32(32+23)+63x22limx+f(x)=36(32+2)2atlimxf(x)=+
Answered by jagoll last updated on 01/Mar/20
lim_(x→∞)  (√(3x^2 −(3(√2)+2)x+2(√2))) − ((√((x(√3)+ (√2))^2  )) =  lim_(x→∞)  (√(3x^2 −(3(√2)+2)x+2(√2))) − (√(3x^2 + 2(√(6 ))x+2)) =  ((−(3(√2)+2)−2(√6))/(2(√3))) = ((−2(√6) −3(√2)−2)/(2(√3)))  = −(√2)−(1/2)(√6)−(1/3)(√3)
limx3x2(32+2)x+22((x3+2)2=limx3x2(32+2)x+223x2+26x+2=(32+2)2623=2632223=2126133
Commented by john santu last updated on 01/Mar/20
good sir
goodsir

Leave a Reply

Your email address will not be published. Required fields are marked *