Menu Close

lim-x-3x-3-3x-2-1-5x-3-4x-2-x-find-the-limit-




Question Number 192639 by pascal889 last updated on 24/May/23
  lim_(x⇒∝ ) ((3x^3 +3x^2 +1)/(5x^3 +4x^2 +x))  find the limit
$$ \\ $$lim_(x⇒∝ ) ((3x^3 +3x^2 +1)/(5x^3 +4x^2 +x))
find the limit

Answered by Subhi last updated on 24/May/23
(3/5)
$$\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$ \\ $$
Commented by pascal889 last updated on 24/May/23
please sir i need the working so i can tap from you sirplease sir
$$\mathrm{ple}{ase}\:\mathrm{sir}\:\mathrm{i}\:\mathrm{need}\:\mathrm{the}\:\mathrm{working}\:\mathrm{so}\:\mathrm{i}\:\mathrm{can}\:\mathrm{tap}\:\mathrm{from}\:\mathrm{you}\:\mathrm{sirplease}\:\mathrm{sir} \\ $$
Answered by cortano12 last updated on 24/May/23
 lim_(x→∞)  ((x^3 (3+(3/x)+(1/x^3 )))/(x^3 (5+(4/x)+(1/x^2 )))) =   lim_(x→∞)  (((3+(3/x)+(1/x^3 ))/(5+(4/x)+(1/x^2 ))))=((3+0)/(5+0))=(3/5)
$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{3}} \left(\mathrm{3}+\frac{\mathrm{3}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\right)}{\mathrm{x}^{\mathrm{3}} \left(\mathrm{5}+\frac{\mathrm{4}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\right)}\:= \\ $$$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{3}+\frac{\mathrm{3}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }}{\mathrm{5}+\frac{\mathrm{4}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }}\right)=\frac{\mathrm{3}+\mathrm{0}}{\mathrm{5}+\mathrm{0}}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *