Menu Close

lim-x-4x-2-16x-1-2x-3-




Question Number 167980 by mathlove last updated on 31/Mar/22
lim_(x→∞) (√(4x^2 −16x+1))−2x+3=?
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{16}{x}+\mathrm{1}}−\mathrm{2}{x}+\mathrm{3}=? \\ $$
Commented by cortano1 last updated on 31/Mar/22
= lim_(x→∞)  2(x−((16)/8))−2x+3  = −4+3=−1
$$=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{2}\left({x}−\frac{\mathrm{16}}{\mathrm{8}}\right)−\mathrm{2}{x}+\mathrm{3} \\ $$$$=\:−\mathrm{4}+\mathrm{3}=−\mathrm{1} \\ $$
Commented by mathlove last updated on 31/Mar/22
how???
$${how}??? \\ $$
Commented by mathlove last updated on 31/Mar/22
its any way ?
$${its}\:{any}\:{way}\:? \\ $$
Answered by qaz last updated on 05/Apr/22
lim_(x→+∞) (√(4x^2 −16x+1))−2x+3  =lim_(x→+∞) 2x(√(1−(4/x)+(1/(4x^2 ))))−2x+3  =lim_(x→+∞) 2x(1−(2/x)+o((1/x)))−2x+3  =−1  lim_(x→−∞) (√(4x^2 −16x+1))−2x+3  =lim_(x→+∞) (√(4x^2 +16x+1))+2x+3  =lim_(x→+∞) 2x(√(1+(4/x)+(1/(4x^2 ))))+2x+3  =lim_(x→+∞) 2x(1+(2/x)+o((1/x)))+2x+3  =+∞  ⇒lim_(x→∞) (√(4x^2 −16x+1))−2x+3 not exsist..
$$\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}}\sqrt{\mathrm{4x}^{\mathrm{2}} −\mathrm{16x}+\mathrm{1}}−\mathrm{2x}+\mathrm{3} \\ $$$$=\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}2x}\sqrt{\mathrm{1}−\frac{\mathrm{4}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{4x}^{\mathrm{2}} }}−\mathrm{2x}+\mathrm{3} \\ $$$$=\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}2x}\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{x}}+\mathrm{o}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\right)−\mathrm{2x}+\mathrm{3} \\ $$$$=−\mathrm{1} \\ $$$$\underset{\mathrm{x}\rightarrow−\infty} {\mathrm{lim}}\sqrt{\mathrm{4x}^{\mathrm{2}} −\mathrm{16x}+\mathrm{1}}−\mathrm{2x}+\mathrm{3} \\ $$$$=\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}}\sqrt{\mathrm{4x}^{\mathrm{2}} +\mathrm{16x}+\mathrm{1}}+\mathrm{2x}+\mathrm{3} \\ $$$$=\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}2x}\sqrt{\mathrm{1}+\frac{\mathrm{4}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{4x}^{\mathrm{2}} }}+\mathrm{2x}+\mathrm{3} \\ $$$$=\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}2x}\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{x}}+\mathrm{o}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\right)+\mathrm{2x}+\mathrm{3} \\ $$$$=+\infty \\ $$$$\Rightarrow\underset{\mathrm{x}\rightarrow\infty} {\mathrm{lim}}\sqrt{\mathrm{4x}^{\mathrm{2}} −\mathrm{16x}+\mathrm{1}}−\mathrm{2x}+\mathrm{3}\:\mathrm{not}\:\mathrm{exsist}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *