Menu Close

lim-x-4x-2-16x-1-2x-3-




Question Number 167980 by mathlove last updated on 31/Mar/22
lim_(x→∞) (√(4x^2 −16x+1))−2x+3=?
limx4x216x+12x+3=?
Commented by cortano1 last updated on 31/Mar/22
= lim_(x→∞)  2(x−((16)/8))−2x+3  = −4+3=−1
=limx2(x168)2x+3=4+3=1
Commented by mathlove last updated on 31/Mar/22
how???
how???
Commented by mathlove last updated on 31/Mar/22
its any way ?
itsanyway?
Answered by qaz last updated on 05/Apr/22
lim_(x→+∞) (√(4x^2 −16x+1))−2x+3  =lim_(x→+∞) 2x(√(1−(4/x)+(1/(4x^2 ))))−2x+3  =lim_(x→+∞) 2x(1−(2/x)+o((1/x)))−2x+3  =−1  lim_(x→−∞) (√(4x^2 −16x+1))−2x+3  =lim_(x→+∞) (√(4x^2 +16x+1))+2x+3  =lim_(x→+∞) 2x(√(1+(4/x)+(1/(4x^2 ))))+2x+3  =lim_(x→+∞) 2x(1+(2/x)+o((1/x)))+2x+3  =+∞  ⇒lim_(x→∞) (√(4x^2 −16x+1))−2x+3 not exsist..
limx+4x216x+12x+3=lim2xx+14x+14x22x+3=lim2xx+(12x+o(1x))2x+3=1limx4x216x+12x+3=limx+4x2+16x+1+2x+3=lim2xx+1+4x+14x2+2x+3=lim2xx+(1+2x+o(1x))+2x+3=+limx4x216x+12x+3notexsist..

Leave a Reply

Your email address will not be published. Required fields are marked *